...
首页> 外文期刊>Composites Science and Technology >Toughening mechanism of PP/EPR/SiO_2 composites with superior low-temperature toughness
【24h】

Toughening mechanism of PP/EPR/SiO_2 composites with superior low-temperature toughness

机译:PP / EPR / SiO_2复合材料具有优异的低温韧性的增韧机理

获取原文
获取原文并翻译 | 示例

摘要

Although it has been shown that the brittle-ductile transition temperature (T-bd) of rubber-toughened thermoplastics can be effectively reduced by introducing nanoparticles, the toughening mechanism is still unknown. In this work isotactic polypropylene/ethylene propylene rubber/silica nanoparticles (iPP/EPR/SiO2) composites with excellent low-temperature toughness were prepared. It was found that T-bd could be regulated synergistically by EPR and SiO2. The phase morphology showed that as silica content increased, the interface area between PP matrix and EPR dispersed phase gradually became larger. Moreover, T-bd continued to decrease with the increase of the area of EPR relaxation peak which was due to the expansion of the interface area. According to the results of impact fracture surfaces of the composites, it was found that for composites with greater EPR relaxation peak area, yielding deformation of their matrices was more intense after low-temperature impact test. Thus, a toughening mechanism for iPP/EPR/SiO2 composites at low-temperature was proposed: the internal friction loss induced by the increased phase interfacial area between EPR and iPP matrix attenuated the velocity of the impact force, as a result, compelling high-elastic deformation occurred in iPP matrix which ultimately made the composite to behave as ductile fracture at low temperatures.
机译:尽管已经表明,通过引入纳米颗粒可以有效地减少橡胶增韧热塑性塑料的脆性延展性转变温度(T-BD),但增韧机构仍然未知。在该工作中,制备了具有优异低温韧性的单向化聚丙烯/乙烯丙烯/二氧化硅纳米粒子(IPP / EPR / SiO 2)复合材料。发现T-BD可以通过EPR和SiO2协同调节。相位形态表明,随着二氧化硅含量的增加,PP矩阵与EPR分散相之间的界面面积逐渐变大。此外,T-BD随着EPR弛豫峰面积的增加而继续降低,这是由于界面区域的膨胀而导致的。根据复合材料的冲击断裂表面的结果,发现对于具有更大的EPR弛豫峰面积的复合材料,在低温冲击试验后,它们的基质的变形更加强烈。因此,提出了低温下的IPP / EPR / SiO2复合材料的增韧机制:由EPR和IPP矩阵之间的增加的相位界面区域引起的内部摩擦损失减弱了冲击力的速度,因此引人注目在IPP基质中发生弹性变形,最终使复合材料在低温下表现为韧性骨折。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号