首页> 外文期刊>Composites Science and Technology >Cure-dependent microstructures and their effect on elastic properties of interlayer toughened thermoset composites
【24h】

Cure-dependent microstructures and their effect on elastic properties of interlayer toughened thermoset composites

机译:固化依赖性微观结构及其对层间增韧热固性复合材料弹性性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

To shorten the cure cycle for thermoset prepreg composites, we can either increase the heating rate or the curing temperature. However, this raises the question whether modifying the cure cycle affects the laminate microstructure and physical and mechanical properties. Current state-of-the-art aerospace prepreg composites incorporate thermoplastic particles into the interlayer to increase delamination and impact resistance, which creates a more complicated composition and laminate microstructure. This research investigates the effect of curing conditions on the microstructure and elastic properties of an interlayer toughened prepreg system, Toray's T800SC/3900-2B. Laminates were processed to the same degree of cure using cure cycles with different heating rates. Optical microscopy showed that microstructural characteristics such as the interlayer thickness, particle shape, particle volume fraction and inter-particle distance are dependent on curing conditions. It was found that the glass transition temperature of the toughening particle, the resin viscosity and the elastic deformation of the fibre bed are important for the cure-dependent microstructural evolution at the pre-gelation stage. The out-of plane lamina shear modulus (G13) dependence on temperature of fully cured laminates was measured with Dynamic Mechanical Analysis (DMA). The lamina G13 decreases with increasing cure cycle heating rate at 150-200 degrees C, where toughening particles are rubbery and the matrix is glassy. A micromechanical model demonstrates that the reduction of lamina G13 at higher heating rates results from a decrease in the interlayer shear modulus. Interlayer microstructural features such as particle volume fraction, particle aspect ratio and interparticle contact contribute to the cure path dependence of the interlayer shear modulus. This study provides insight into the fundamental processing behavior of interlayer toughened prepregs and the influence on elastic properties.
机译:为了缩短用于热固性预浸料复合材料的固化循环,我们可以增加加热速率或固化温度。然而,这提出了改性固化周期是否影响层压组织和物理和机械性能的问题。目前的最先进的航空航天预浸料复合材料将热塑性颗粒掺入中间层中以增加分层和抗冲击性,这产生更复杂的组合物和层压微观结构。本研究研究了固化条件对层间增韧预浸料系统的微观结构和弹性性能的影响,Toray的T800SC / 3900-2B。使用具有不同加热速率的固化循环处理层压材料以相同的固化程度。光学显微镜表明,微观结构特性如中间层厚度,颗粒形状,颗粒体积分数和颗粒间距离取决于固化条件。发现增韧颗粒的玻璃化转变温度,树脂粘度和纤维床的弹性变形对于预凝胶化阶段的固化依赖性微观结构演变是重要的。用动态机械分析(DMA)测量依赖于完全固化层压板的温度的平面外层剪切模量(G13)。薄层G13随着固化循环加热速率在150-200℃下的增加而降低,其中增韧颗粒是橡皮状的,并且基质是玻璃状的。微机械模型表明,在更高的加热速率下薄层G13的降低导致层间剪切模量的降低产生。粒子体积分数,粒子纵横比和颗粒接触等层间微结构特征有助于中间层剪切模量的固化路径依赖性。本研究提供了对层间增韧预浸料的基本加工行为以及对弹性性质的影响的洞察力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号