...
首页> 外文期刊>Composites Science and Technology >The combination of π-π interaction and covalent bonding can synergistically strengthen the flexible electrical insulating nanocomposites with well adhesive properties and thermal conductivity
【24h】

The combination of π-π interaction and covalent bonding can synergistically strengthen the flexible electrical insulating nanocomposites with well adhesive properties and thermal conductivity

机译:π-π相互作用和共价键的结合可以协同增强具有良好粘合性能和导热性的柔性电绝缘纳米复合材料

获取原文
获取原文并翻译 | 示例
           

摘要

Adding thermal conductive filler is an effective method to improve the thermal conductivity of polymer matrix. In this research, we demonstrated that the polymer composites with much improved thermal conductivity while maintaining low electrical conductivity, which could be achieved via using hybrid 2D stacked filler and controlling the alignment of the filler in polymer matrix. In order to do this, the graphene oxide (GO) was prepared and simultaneously reduced/functionalized by diethylenetriamine (DETA) to obtain NH2-functionalized graphene (NfG) which designed to be immobilized on the surface of large-sized insulating hexagonal boron nitride (h-BN) via pi-pi stacking interaction. In this situation, since the NfG sheets were fixed on the surface of h-BN, the NfG sheets were well separated from each other and participated in the resin curing process. Hence, not only significantly enhanced thermal conductivity (similar to 3.409 W/m.K, in-plane direction) was obtained, but also a very low electrical conductivity was achieved. The low electrical conductivity was believed to be ascribed to both embedded insulating network of h-BN to inhibit the mobility of charge carrier and well-separated NfG sheets via pi-pi stacking interaction. In addition, the nanocomposites also exhibited good thermal stability and adhesive properties. We believed that this special structure will provide a new thought for fabricating thermal interface materials (TIMs) with much high thermal conductivity as well as low electrical conductivity. (C) 2017 Published by Elsevier Ltd.
机译:添加导热填料是提高聚合物基体导热系数的有效方法。在这项研究中,我们证明了聚合物复合材料具有更高的热导率,同时又保持了较低的电导率,这可以通过使用混合二维堆叠填料并控制填料在聚合物基体中的排列来实现。为此,制备了氧化石墨烯(GO),同时用二亚乙基三胺(DETA)还原/官能化了NH2官能化的石墨烯(NfG),该石墨烯被设计固定在大型绝缘六方氮化硼( h-BN)通过pi-pi堆叠互动。在这种情况下,由于将NfG片固定在h-BN的表面上,因此NfG片彼此良好地分离并且参与树脂固化过程。因此,不仅获得了显着提高的导热率(类似于面内方向3.409 W / m.K),而且获得了非常低的导电率。人们认为,低电导率既可以归因于h-BN的嵌入式绝缘网络,也可以通过pi-pi堆叠相互作用来抑制电荷载流子的迁移和良好分离的NfG薄片。另外,纳米复合材料还表现出良好的热稳定性和粘合性能。我们相信,这种特殊的结构将为制造具有高导热率和低导电率的热界面材料(TIM)提供新的思路。 (C)2017由Elsevier Ltd.发布

著录项

  • 来源
    《Composites Science and Technology》 |2018年第8期|1-10|共10页
  • 作者单位

    Chinese Acad Sci, Hefei Inst Phys Sci, Inst Appl Technol, Hefei 230031, Anhui, Peoples R China;

    Chinese Acad Sci, Hefei Inst Phys Sci, Inst Appl Technol, Hefei 230031, Anhui, Peoples R China;

    Chinese Acad Sci, Hefei Inst Phys Sci, Inst Appl Technol, Hefei 230031, Anhui, Peoples R China;

    Chinese Acad Sci, Hefei Inst Phys Sci, Inst Appl Technol, Hefei 230031, Anhui, Peoples R China;

    Chinese Acad Sci, Hefei Inst Phys Sci, Inst Appl Technol, Hefei 230031, Anhui, Peoples R China;

    Chinese Acad Sci, Hefei Inst Phys Sci, Inst Appl Technol, Hefei 230031, Anhui, Peoples R China;

    Chinese Acad Sci, Hefei Inst Phys Sci, Inst Appl Technol, Hefei 230031, Anhui, Peoples R China;

    Chinese Acad Sci, Hefei Inst Phys Sci, Inst Appl Technol, Hefei 230031, Anhui, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Polymer-matrix composites (PMCs); Thermal properties; Anisotropy; Graphene;

    机译:聚合物基复合材料(PMCs);热性能;各向异性;石墨烯;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号