首页> 外文期刊>Composites Science and Technology >Dual functionality of hierarchical hybrid networks of multiwall carbon nanotubes anchored magnetite particles in soft polymer nanocomposites: Simultaneous enhancement in charge storage and microwave absorption
【24h】

Dual functionality of hierarchical hybrid networks of multiwall carbon nanotubes anchored magnetite particles in soft polymer nanocomposites: Simultaneous enhancement in charge storage and microwave absorption

机译:多壁碳纳米管锚固磁铁矿颗粒在软聚合物纳米复合材料中的分层混合网络的双重功能:电荷存储和微波吸收的同时增强

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

We demonstrated, for the first time, the use of submicron size insulative junctions of magnetite (Fe3O4) in conductive networks of multiwall carbon nanotubes (MWNTs) for simultaneously achieving enhanced charge storage and superior microwave absorption in X-band (8.2-12.4 GHz) frequency range. Herein, electrical conductivity in fluoroelastomer matrix was attained by dispersion of MWNTs, whereas low dielectric loss was achieved by employing Fe3O4 particles as insulative spacers between MWNT networks. High-performance charge-storing nanocomposites were developed using unique approach where relatively large insulative Fe3O4 spacers were anchored to MWNT networks leading to disrupted conductive pathways. The size of Fe(3)O(4 )particles was controlled in such a way that the distance between discrete MWNTs at the insulative junction is larger than the critical distance required for hopping and tunneling of nomadic charges. This also resulted in optimum impedance matching and additional magnetic loss associated with Fe3O4, which led to the synergistic absorption of microwaves. Taken together, the anchoring of sub-micron size Fe3O4 particles with MWNTs provided dual functionality of high real permittivity (epsilon') along with decreased dielectric loss which are both favorable for charge storage. Furthermore, it led to improved impedance matching and we were able to achieve maximum microwave absorption.
机译:我们首次展示了在多壁碳纳米管(MWNT)的导电网络中使用磁铁矿(Fe3O4)的亚微米级绝缘结在X波段(8.2-12.4 GHz)上同时实现增强的电荷存储和出色的微波吸收频率范围。在此,通过分散MWNT而在氟弹性体基质中获得电导率,而通过使用Fe 3 O 4颗粒作为MWNT网络之间的绝缘间隔物来实现低介电损耗。使用独特的方法开发了高性能的电荷存储纳米复合材料,其中相对较大的绝缘性Fe3O4间隔基固定在MWNT网络上,从而导致导电路径中断。以这样的方式控制Fe(3)O(4)粒子的大小,以使绝缘结处的离散MWNT之间的距离大于跳动和隧穿游牧电荷所需的临界距离。这也导致了最佳的阻抗匹配以及与Fe3O4相关的额外磁损耗,从而导致了微波的协同吸收。综上所述,亚微米尺寸的Fe3O4颗粒与MWNT的结合提供了高实介电常数(ε')和降低的介电损耗的双重功能,均有利于电荷存储。此外,它还改善了阻抗匹配,使我们能够最大程度地吸收微波。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号