...
首页> 外文期刊>Composites Science and Technology >Effect of manganese dopants on defects, nano-strain, and photovoltaic performance of Mn-CdS/CdSe nanocomposite-sensitized ZnO nanowire solar cells
【24h】

Effect of manganese dopants on defects, nano-strain, and photovoltaic performance of Mn-CdS/CdSe nanocomposite-sensitized ZnO nanowire solar cells

机译:锰掺杂对Mn-CdS / CdSe纳米复合敏化ZnO纳米线太阳能电池缺陷,纳米应变和光伏性能的影响

获取原文
获取原文并翻译 | 示例

摘要

This study reports the mechanism of power conversion efficiency (PCE) enhancement in CdS/CdSe quantum dot (QD) composite-sensitized ZnO nanowire (NW) solar cells when Mn2+ ions are doped in CdS QDs. Various ZnO NWs sensitized with different types of QD-composites including CdS, CdS/CdSe and Mn CdS/CdSe QDs were successfully synthesized using an in-situ sequential assembly process involving successive ionic layer adsorption and reaction and chemical bath deposition at room temperature. QD solar cells with a ZnS/CdSe/Mn(0.02M)CdS/ZnO NW structure exhibited a PCE of 3.47% (V-oc = 0.74 V, J(sc) = 14.56 mA/cm(2), and FF = 36.92%), which is 33% higher than that (2.61%) of their counterparts without Mn2+ dopants. Electrochemical impedance spectroscopy studies of the devices reveal that the main role of the Mn2+ dopant was to reduce the recombination of photo-excited carriers. Similar improvement in PCE is traditionally indicated as being a result of the generation of the mid-band (T-4(1)-(6)A(1)) region owing to the atomic d orbitals of Mn (T-4(1) and (6)A(1)); however, no evidence is available. Rather, we focused on quantifying the nanoscale strain in the QD composites with and without Mn2+ this is because the formation of nanoscale strain in QDs implies the presence of considerable imperfections functioning as charge traps and recombination centers. Analyses of the interface, interior, and crystallinity of the QDs by using high-resolution electron microscopy combined with geometric phase analysis (GPA) revealed that Mn2+ doping significantly reduced the lattice nano-strain in the QD nano-composites. This result is probably owing to Mn2+ cation diffusion (or exchange) to the defective CdS/CdSe layer assisted by the differences among the solubility products (K-sp) in the MnS, CdS, and CdSe phases; this diffusion reduces the nanoscale strain resulting from the presence of defects and misfit dislocations in QD composites and thereby decreases carrier recombination.
机译:这项研究报告了当CdS QDs中掺入Mn2 +离子时,CdS / CdSe量子点(QD)复合敏化的ZnO纳米线(NW)太阳能电池中功率转换效率(PCE)增强的机理。使用包括连续离子层吸附和反应以及在室温下进行化学浴沉积的原位顺序组装工艺,成功合成了各种不同的QD复合物(包括CdS,CdS / CdSe和Mn CdS / CdSe QD)敏化的ZnO NW。具有ZnS / CdSe / Mn(0.02M)CdS / ZnO NW结构的QD太阳能电池的PCE为3.47%(V-oc = 0.74 V,J(sc)= 14.56 mA / cm(2),FF = 36.92 %),比不含Mn2 +的同类产品(2.61%)高33%。器件的电化学阻抗谱研究表明,Mn2 +掺杂剂的主要作用是减少光激发载流子的重组。传统上指出,由于Mn(T-4(1)的d原子轨道产生了中带(T-4(1)-(6)A(1))区域,因此PCE得到了类似的改善)和(6)A(1));但是,没有证据。而是,我们集中于定量在具有和不具有Mn 2+的QD复合材料中的纳米级应变,这是因为在QD中形成纳米级应变意味着存在着大量缺陷,这些缺陷起着电荷陷阱和复合中心的作用。通过使用高分辨率电子显微镜结合几何相分析(GPA)对量子点的界面,内部和结晶度进行分析,发现Mn2 +掺杂显着降低了量子点纳米复合材料的晶格纳米应变。此结果可能是由于Mn2 +阳离子扩散(或交换)至缺陷CdS / CdSe层,而MnS,CdS和CdSe相中的溶解度产物(K-sp)之间存在差异。这种扩散减少了由于QD复合材料中缺陷和失配位错的存在而导致的纳米级应变,从而减少了载流子复合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号