...
首页> 外文期刊>Composites Part A: Applied Science and Manufacturing. >Interatomic potentials for atomic scale modeling of metal-matrix ceramic particle reinforced nanocomposites
【24h】

Interatomic potentials for atomic scale modeling of metal-matrix ceramic particle reinforced nanocomposites

机译:金属基陶瓷颗粒增强纳米复合材料原子尺度建模的原子间势。

获取原文
获取原文并翻译 | 示例

摘要

Functionally graded particle reinforced metal-matrix nanocomposite materials show significant promise for use in protective structures due to their high strengths, stiffness, failure resistance, and the ability to mitigate damage during ballistic impact. Further improvement of the performance of these materials requires fine-tuning of the nanostructure which, in turn, necessitates a clear fundamental understanding of the deformation and failure mechanisms under conditions of dynamic loading. While the molecular dynamics simulation technique is an excellent tool for investigation of the mechanisms of plastic deformation and failure of the particle reinforced metal-matrix nanocomposites at the atomic scale, the predictive power of the technique relies on an accurate description of the interatomic interactions. This paper provides a brief review of a recently developed class of interatomic potentials capable of the computationally efficient description of multi-component systems composed of metals. Si, Ge, and C. The potentials are based on reformulation of the Embedded Atom Method (EAM) potential for metals and two empirical potentials commonly used for covalently bonded materials, Stillinger-Weber (SW) and Tersoff, in a compatible functional form. The description of the angular dependence of interatomic interactions in the covalent materials is incorporated into the framework of the EAM potential and, therefore, the new class of potentials is dubbed Angular-dependent EAM (A-EAM) potentials. The A-EAM potentials retain all the properties of the pure components as predicted by the original SW, Tersoff, and EAM potentials, thus eliminating the need for extensive testing and limiting the scope of the potential parameterization to only the cross-interaction between the components. The performance of the A-EAM potentials is illustrated for the Au-Si system, with good agreement with experimental data obtained for the enthalpy of mixing in the Au-Si liquid alloy and the Au-Si phase diagram. The A-EAM potentials are suitable for large-scale atomistic simulations of metal-Si/Ge/C/SiC systems, such as the ones required for investigation of the dynamic response of nanocomposite materials to a ballistic/blast impact.
机译:功能梯度的颗粒增强金属基纳米复合材料由于其高强度,刚度,抗破坏性以及减轻弹道撞击过程中的破坏的能力,显示出在防护结构中的巨大前景。这些材料的性能的进一步改善要求对纳米结构进行微调,从而需要对动态载荷条件下的变形和破坏机理有一个清晰的基本了解。尽管分子动力学模拟技术是研究原子级尺度上的颗粒增强金属基纳米复合材料塑性变形和破坏机理的出色工具,但该技术的预测能力依赖于对原子间相互作用的准确描述。本文简要概述了最近开发的一类原子间电势,该势能能够有效地计算出由金属组成的多组分系统。 Si,Ge和C。电势基于金属的嵌入原子方法(EAM)势能和共价键合材料常用的两种经验电势,斯蒂林格-韦伯(SW)和Tersoff,具有兼容的功能形式。对共价材料中原子间相互作用的角度依赖性的描述被并入EAM势的框架,因此,新的一类势被称为与角度相关的EAM(A-EAM)势。 A-EAM电位保留了原始SW,Tersoff和EAM电位所预测的纯组分的所有特性,因此无需进行大量测试,并且将电位参数化的范围限制为仅组分之间的相互作用。说明了Au-Si体系的A-EAM电势性能,与Au-Si液态合金中混合焓和Au-Si相图获得的实验数据吻合良好。 A-EAM电位适用于金属-Si / Ge / C / SiC系统的大规模原子模拟,例如用于研究纳米复合材料对弹道/爆炸冲击的动力响应的模拟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号