...
首页> 外文期刊>Composites. B, Engineering >Percolation mechanism and effective conductivity of mechanically deformed 3-dimensional composite networks: Computational modeling and experimental verification
【24h】

Percolation mechanism and effective conductivity of mechanically deformed 3-dimensional composite networks: Computational modeling and experimental verification

机译:机械变形三维复合网络的渗透机制和有效电导率:计算建模与实验验证

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this work, the structural evolution of conductive polymer composites (CPCs) in response to mechanical deformation (uniaxial and biaxial compressive and tensile strains) is theoretically modeled and experimentally verified. The structural responses in mechanically deformed CPCs were simulated by incorporating the corresponding topological changes in representative volume element (RVE) and embedded filler networks. The percolating filler networks were then modeled as an equivalent electrical circuit consisting of tunneling and intrinsic resistances to examine the effect of deformation on the percolation threshold and the effective electrical conductivity. The results revealed that the filler alignment caused by strain changed both the vertical and lateral percolation thresholds, albeit with different trends. With an increase of uniaxial tensile (or equivalently, biaxial compressive) strain, applied on the vertical direction, the vertical percolation threshold initially reached a minimum value before rising, while the lateral percolation threshold monotonically increased. On the other hand, following incremental uniaxial compression (or equivalently, biaxial tension), the lateral percolation threshold reached a minimum value before increasing, while the vertical percolation threshold monotonically increased. The same relationship was observed in CPCs containing 1D fillers with different aspect ratios. The validity of the theoretical models was verified by comparing the predicted electrical conductivity values with the experimentally observed data obtained from polypropylene - multiwalled carbon nanotube nanocomposites.
机译:在这项工作中,理论上建模和实验验证,导电聚合物复合材料(CPC)的结构演化(单轴和双轴压缩和拉伸菌株)是在理论上建模和实验验证的。通过结合代表性体积元素(RVE)和嵌入式填充网络的相应拓扑变化来模拟机械变形CPC中的结构响应。然后将渗透填充网络建模为由隧道和固有电阻组成的等效电路,以检查变形对渗透阈值和有效电导率的影响。结果表明,由菌株引起的填充物对齐改变了垂直和横向渗透阈值,尽管具有不同的趋势。随着在垂直方向上施加在垂直方向上的单轴拉伸(或等效的双轴压缩)应变的增加,垂直渗透阈值最初在上升之前达到最小值,而横向渗透阈值单调增加。另一方面,在增量单轴压缩(或等效,双轴张力)之后,横向渗透阈值在增加之前达到最小值,而垂直渗透阈值单调增加。在含有不同纵横比的1D填料的CPC中观察到相同的关系。通过将预测的电导率值与来自聚丙烯 - 多壁碳纳米管纳米核复合材料获得的实验观察的数据进行比较,通过比较预测的电导率值来验证理论模型的有效性。

著录项

  • 来源
    《Composites. B, Engineering》 |2021年第15期|108552.1-108552.9|共9页
  • 作者单位

    Univ Toronto Dept Mech & Ind Engn Microcellular Plast Mfg Lab Toronto ON M5S 3G8 Canada;

    Univ Toronto Dept Mech & Ind Engn Microcellular Plast Mfg Lab Toronto ON M5S 3G8 Canada|Univ Massachusetts Lowell Dept Plast Engn Lowell MA 01854 USA;

    Cairo Univ Fac Engn Dept Mech Design & Prod Giza Egypt;

    Univ Toronto Dept Mech & Ind Engn Microcellular Plast Mfg Lab Toronto ON M5S 3G8 Canada;

    Univ Toronto Dept Mech & Ind Engn Microcellular Plast Mfg Lab Toronto ON M5S 3G8 Canada|Jiangnan Univ Key Lab Ecotext Minist Educ Wuxi 214122 Jiangsu Peoples R China;

    Univ Toronto Dept Mech & Ind Engn Microcellular Plast Mfg Lab Toronto ON M5S 3G8 Canada;

    Univ Toronto Dept Mech & Ind Engn Microcellular Plast Mfg Lab Toronto ON M5S 3G8 Canada;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Polymer-matrix composites; Electrical properties; Directional orientation; Computational modeling; Percolation threshold;

    机译:聚合物 - 基质复合材料;电学性质;方向定向;计算建模;渗透阈值;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号