...
首页> 外文期刊>Composites. B, Engineering >Investigating the roles of fiber, resin, and stacking sequence on the low-velocity impact response of novel hybrid thermoplastic composites
【24h】

Investigating the roles of fiber, resin, and stacking sequence on the low-velocity impact response of novel hybrid thermoplastic composites

机译:研究纤维,树脂和堆叠序列对新型杂化热塑性复合材料的低速冲击响应的作用

获取原文
获取原文并翻译 | 示例

摘要

This study investigates the effects of fiber type, resin type, and stacking sequence on the dynamic response of fiber-reinforced polymer composite (FRPC) laminates under low-velocity impact (LVI) tests. Novel thermoplastic (TP) laminates are fabricated with a newly developed liquid methyl methacrylate thermoplastic resin, Elium (R) 188, at room temperature. FRPCs comprising woven ultra-high molecular weight polyethylene (UHMWPE) fabrics, woven carbon fabrics, and two different hybrid systems with alternative stacking sequences of those fibers are fabricated by the vacuum-assisted resin infusion (VARI) method. Besides, equivalent thermosetting-based (TS) composites with two epoxy systems are fabricated to compare the role of matrix type. Impact tests at different energy levels are performed on the TP and TS laminates to investigate the impact characteristics, namely contact force, deflection, energy attributes, structural integrity, and failure/damage modes. Besides, the mechanics of structure genome (MSG) and the commercial finite element code ABAQUS are used to verify the experimental results for one of the developed laminates. The results demonstrate that the hybrid system with UHMWPE fibers on the sides exhibits lower structural loss up to 47% and lower absorbed energy by 18% compared to those presented by the other type of hybrid system comprising carbon fabrics on the sides. Besides, it is found that the newly developed TP laminate underwent extended plasticity and presented a ductile behavior. The newly developed TP laminate demonstrated lower structural loss up to 200%, lower contact force by 14%, and lower absorbed energy by 48% compared to those of TS counterparts.
机译:本研究研究了纤维型,树脂类型和堆叠序列对低速冲击(LVI)测试下纤维增强聚合物复合材料(FRPC)层压板的动态响应的影响。新型热塑性塑料(TP)层压板用新开发的液体甲基丙烯酸甲酯热塑性树脂,elium(r)188,在室温下制造。通过真空辅助树脂输注(VARI)方法制造包括编织超高分子量聚乙烯(UHMWPE)织物(UHMWPE)织物(UHMWPE)织物,编织碳织物和具有替代堆叠序列的两种不同的杂交系统。此外,制造了具有两个环氧系统的等效热固性(TS)复合材料以比较基质类型的作用。在TP和TS层压板上执行不同能量水平的冲击试验,以研究冲击特性,即接触力,偏转,能量属性,结构完整性和故障/损坏模式。此外,结构基因组(MSG)和商业有限元码ABAQUS的机制用于验证开发层压板之一的实验结果。结果表明,与通过侧面的其他类型的混合系统所呈现的相比,侧面上具有UHMWPE纤维的杂交系统具有较低的结构损失,其结构损失高达47%并降低吸收能量18%。此外,发现新开发的TP层压板的延长可塑性并提出了延展性行为。新开发的TP层压板的结构损失降低至200%,接触力降低14%,与TS对应物相比将吸收能量降低48%。

著录项

  • 来源
    《Composites. B, Engineering》 |2021年第15期|108554.1-108554.14|共14页
  • 作者单位

    Hong Kong Univ Sci & Technol Dept Mech & Aerosp Engn Kowloon Clear Water Bay Hong Kong Peoples R China|Chinese Univ Hong Kong Dept Mech & Automat Engn Shatin Hong Kong Peoples R China;

    Hong Kong Univ Sci & Technol Dept Mech & Aerosp Engn Kowloon Clear Water Bay Hong Kong Peoples R China;

    Semnan Univ Dept Mech Engn POB 35131-19111 Semnan Iran;

    Semnan Univ Dept Aerosp Engn POB 35131-19111 Semnan Iran;

    Guangzhou HKUST Fok Ying Tung Res Inst Ctr Engn Mat & Reliabil Guangzhou Peoples R China;

    Guangzhou Lushan New Mat Co Ltd Guangzhou Peoples R China;

    Guangzhou Lushan New Mat Co Ltd Guangzhou Peoples R China;

    Guangzhou Lushan New Mat Co Ltd Guangzhou Peoples R China;

    Chinese Univ Hong Kong Dept Mech & Automat Engn Shatin Hong Kong Peoples R China;

    Shenzhen Univ Coll Civil & Transportat Engn Shenzhen Peoples R China;

    Hong Kong Univ Sci & Technol Dept Mech & Aerosp Engn Kowloon Clear Water Bay Hong Kong Peoples R China|Guangzhou HKUST Fok Ying Tung Res Inst Ctr Engn Mat & Reliabil Guangzhou Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Low-velocity impact; Hybrid composites; Thermoplastic resin; FE model; Carbon fibers; UHMWPE fibers;

    机译:低速冲击;混合复合材料;热塑性树脂;FE模型;碳纤维;UHMWPE纤维;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号