...
首页> 外文期刊>Composites >Analysis of mechanical behavior of 3D printed heterogeneous particle-polymer composites
【24h】

Analysis of mechanical behavior of 3D printed heterogeneous particle-polymer composites

机译:3D打印非均质颗粒-聚合物复合材料的力学行为分析

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Additive manufacturing has emerged as a powerful tool for fabrication of heterogeneous particle-polymer composites with enhanced material properties. These synthetic particle-polymer composites are lightweight, tough and showcase remarkable fracture toughness. Yet there is still a big knowledge gap in engineering particle microstructure orientation and loading fraction, to achieve the desired stress-deformation behavior of particle-polymer composites. To close this knowledge gap, it is essential to study the fracture toughness and stress-deformation patterns. Hence, in this paper, we additively manufactured particle-polymer composites with varied particle chain distributions and particle loading fractions, and investigated the mechanical behaviors of those composites both experimentally and analytically. Additionally, we investigated the influence of layer thickness on the Young's modulus and breaking propagation paths of the 3D printed samples. It is observed that the breaking edges remain smooth for parts printed with a small layer thickness and becomes irregular with asymmetrical fractures as the layer thickness is bigger than a critical value. The Young's modulus predicted by Cox-Krenchel model show similar trends as in the experimental results and validates the feasibility of the models in guiding the design of particle distribution, orientation and concentration in heterogeneous particle-polymer composites. Yet a higher modulus is predicted when particle chains are aligned parallel to the force direction, while a much smaller modulus, as small as the modulus of pure polymer, is predicted when particle chains are aligned perpendicular to the force direction. The analytical results of S1-0 and S1-45 composites agree with the experimental results with a deviation of 5.5%. While the analytical results of S1-90 do not agree with the experimental results, mainly due to the weak interfacial bonding between particle chain and polymer in the 3D printed composites. Both analytical and experimental results show that the particle-polymer composites with high particle volume loading fraction and parallel particle chain orientation has the highest stiffness
机译:增材制造已成为制造具有增强材料性能的异质颗粒-聚合物复合材料的有力工具。这些合成的颗粒-聚合物复合材料轻巧,坚韧,并具有出色的断裂韧性。然而,在实现颗粒-聚合物复合材料所需的应力-变形行为方面,工程颗粒的微观结构取向和载荷分数仍然存在很大的知识空白。为了弥合这一知识鸿沟,研究断裂韧性和应力变形模式至关重要。因此,在本文中,我们通过增材制造具有变化的颗粒链分布和颗粒负载分数的颗粒-聚合物复合材料,并通过实验和分析方法研究了这些复合材料的力学行为。此外,我们研究了层厚度对3D打印样品的杨氏模量和断裂传播路径的影响。可以观察到,对于印刷厚度较小的零件,断裂边缘保持平滑,并且当厚度大于临界值时,断裂边缘会由于不对称断裂而变得不规则。由Cox-Krenchel模型预测的杨氏模量显示出与实验结果相似的趋势,并验证了该模型在指导非均质颗粒-聚合物复合材料中颗粒分布,取向和浓度设计方面的可行性。当颗粒链平行于力方向排列时,可以预测更高的模量,而当颗粒链垂直于力方向排列时,可以预测到与纯聚合物的模量一样小的模数。 S1-0和S1-45复合材料的分析结果与实验结果吻合,偏差为5.5%。尽管S1-90的分析结果与实验结果不一致,这主要是由于3D打印复合物中颗粒链与聚合物之间的界面键很弱。分析和实验结果均表明,具有高颗粒体积加载分数和平行颗粒链取向的颗粒-聚合物复合材料具有最高的刚度

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号