...
首页> 外文期刊>Composites >Effect of viscoelasticity on interfacial stress transfer mechanism in the biocomposites: A theoretical study of viscoelastic shear lag model
【24h】

Effect of viscoelasticity on interfacial stress transfer mechanism in the biocomposites: A theoretical study of viscoelastic shear lag model

机译:粘弹性对生物复合材料界面应力传递机理的影响:粘弹性剪切滞后模型的理论研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Biocomposite with regularly staggered alignment microstructure is frequently observed in natural biological tissues, and exhibits superior mechanical behavior. Owing to their viscoelastic nature, biocomposites exhibit stress rate-dependent stiffness function and mechanical behavior. In this paper, a linear viscoelastic shear lag model (SLM) is proposed to illustrate the micromechanical behavior of biocomposites under triangular loading pulse. Theoretical and numerical results are derived to predict the deformation and stress transfer between fibers and interfibrous matrix while the biocomposite is transiently stretched. The results from the analytical and numerical solutions demonstrate that how the fiber overlap length and loading rate affect the stress transfer and mechanical properties of biocomposites. The structure-property correlation is illustrated for viscoelastic biomaterials under transient loading, and existence of characteristic length of soft matter with viscoelastic property is involved in load transfer mechanism between the adjacent reinforcements in transient regime, which optimizes the load transfer mechanism between the adjacent reinforcements. Furthermore, we found that discontinuous fibril model could ensure large relative sliding deformation, helping dissipate energy, protecting fibril from overall damage, and achieving high ductility and high toughness, which can provide beneficial design strategies for engineering fiber reinforced composites.
机译:在自然生物组织中经常观察到具有规则交错的排列微观结构的生物复合材料,并表现出卓越的机械性能。由于它们的粘弹性,生物复合材料表现出应力速率依赖性的刚度功能和机械性能。本文提出了线性粘弹性剪切滞后模型(SLM)来说明生物复合材料在三角形加载脉冲下的微机械行为。推导了理论和数值结果,以预测在生物复合材料被暂时拉伸时纤维与纤维间基质之间的变形和应力传递。分析和数值解决方案的结果表明,纤维重叠长度和加载速率如何影响生物复合材料的应力传递和机械性能。阐述了粘弹性生物材料在瞬态载荷作用下的结构性质相关性,在瞬态状态下相邻钢筋之间的荷载传递机理涉及具有粘弹性的软物质特征长度的存在,从而优化了相邻钢筋之间的荷载传递机理。此外,我们发现不连续的原纤维模型可以确保较大的相对滑动变形,帮助耗散能量,保护原纤维免受整体损坏,并实现高延展性和高韧性,这可以为工程纤维增强复合材料提供有益的设计策略。

著录项

  • 来源
    《Composites》 |2019年第1期|297-308|共12页
  • 作者单位

    Jinan Univ, MOE Key Lab Disaster Forecast & Control Engn, Inst Appl Mech, Guangzhou 510632, Guangdong, Peoples R China|Univ Plymouth, Sch Engn, Plymouth PL4 8AA, Devon, England;

    Jinan Univ, MOE Key Lab Disaster Forecast & Control Engn, Inst Appl Mech, Guangzhou 510632, Guangdong, Peoples R China;

    Univ Plymouth, Sch Engn, Plymouth PL4 8AA, Devon, England;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Biocomposites; Shear lag model; Mechanics of composite interface; Viscoelastic model; Mechanical response;

    机译:生物复合材料;剪切滞后模型;复合材料界面力学;粘弹性模型;力学响应;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号