...
首页> 外文期刊>Composite Structures >Concurrent stringer topology and skin steered fiber pattern optimization for grid stiffened composite shell structures
【24h】

Concurrent stringer topology and skin steered fiber pattern optimization for grid stiffened composite shell structures

机译:网格加强复合壳结构的并发梯形拓扑和皮肤转向纤维图案优化

获取原文
获取原文并翻译 | 示例
           

摘要

The use of fiber steering to improve composite plate behavior for aerospace applications is only feasible if the steered laminates can be effectively combined with a stiffening grid. In this paper, a methodology is presented for concurrent optimization of stringers topology and fiber pattern of grid stiffened tow steered composite structures. A finite element formulation is obtained through symbolic integration for tow steered composite panels and is extended to analyze grid stiffened composite panels. One of the challenges in the topology optimization of grid stiffened panels is the separation of the stringers' discretization from the skin discretization. The meshing of a stiffened panel is tedious and time-consuming, and changing the topology of stringers may require re-meshing of the complete design domain. Based on a weak formulation of the continuity requirements between skin and stringers, the Lagrange multiplier approach is proposed to circumvent this problem. This approach allows the meshes of stringers and skin to be independent. The accuracy of the resulting finite element solver is compared to that of a conformal mesh based solver. The optimization design variables are defined to describe both the topology of the stringers and the fiber patterns in each of the panel's plies. The fiber pattern parametrization is based on Lagrangian interpolation of nodal based fiber angles. The fiber angle distribution is mapped on the centroids of the composite plate elements used for the FE analysis. In this approach, a manufacturing mesh is used to define the nodes for the design variables, i.e., the nodal fiber angles, controlling the fiber pattern in the skin. The ground structure method is used to optimize the topology of the stringers. The heights of the stringers in the ground structure are defined as the stringer design variables. Therefore, the overall design vector includes the fiber angles at the manufacturing mesh nodes for each ply and the stringers' height in the ground structure. The method is tested using a buckling load optimization with constraints on manufacturing aspects, such as minimum tow turn radius. The Lagrange multiplier based coupling of stiffener and plate models was shown to be accurate and effective. The results of the concurrent optimization of stiffener grid and fiber patterns showed that steering does improve the behavior of stiffened plates.
机译:使用光纤转向以改善航空航天应用的复合板行为仅是可行的,如果可以有效地与加强栅格有效地结合。本文介绍了一种方法,用于螺旋桨拓扑和栅格加强牵引转向复合结构的拓扑结构和光纤图案的方法。通过牵引转向复合板的符号集成获得有限元配方,并扩展以分析网格加强的复合板。网格加强面板的拓扑优化中的挑战之一是将桁条分离从皮肤离散化的离散化分离。加强面板的啮合是乏味且耗时的,并且改变串的拓扑可能需要重新筛选完整的设计域。基于皮肤和桁条之间的连续性要求的弱制性,提出了拉格朗日乘法器方法来规避这个问题。这种方法允许桁条和皮肤的网格独立。将得到的有限元件求解器的精度与基于共形网的求解器的精度进行了比较。优化设计变量被定义为描述纵梁的拓扑和每个面板层中的光纤图案。光纤图案参数化基于Nodal基纤维角的拉格朗日插值。纤维角度分布映射在用于Fe分析的复合板元件的质心上。在这种方法中,制造网格用于定义设计变量的节点,即节点纤维角,控制皮肤中的光纤图案。地面结构方法用于优化桁条的拓扑。地面结构中的桁条的高度被定义为Stringer设计变量。因此,整体设计矢量包括用于在地面结构中的每个层和纵梁高度的制造网状节点处的纤维角。使用屈曲负载优化测试该方法,其限制在制造方面,例如最小牵引转弯半径。基于Lagrange乘法器的加强件和板式模型的联轴器被显示为准确有效。加强栅格和纤维图案的并发优化结果表明,转向确实改善了加强板的行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号