首页> 外文期刊>Composite Structures >Energy-absorption performance of porous materials in sandwich composites under hypervelocity impact loading
【24h】

Energy-absorption performance of porous materials in sandwich composites under hypervelocity impact loading

机译:高速冲击载荷作用下夹芯复合材料中多孔材料的能量吸收性能

获取原文
获取原文并翻译 | 示例
       

摘要

This study presents the results of an experimental investigation concerning composite structure models for hypervelocity impact-resistant composites. Sandwich models were investigated for their abilities to prevent perforation subjected to 1-7 km/s projectile hypervelocity impact loading. The models involve several material systems, dual-wall configurations, fabric-reinforced silicon carbide ceramic-matrix composite as impact-facing sheet, hollow sphere energy-absorption materials, carbon fabric and Kevlar fabric reinforced epoxy matrix composites as pressure walls. Hypervelocity impact energy decline patterns are related to impact velocity, impact-facing sheet materials, the initial porosity and the pore radius of porous energy-absorption materials, sandwich structure, pressure wall composite configurations and multi-wall structure. Stainless metal fiber reinforced silica carbon matrix composites showed much better performance than polymer matrix composites in absorbing energy and translating energy when they were used as impact-facing sheets under hypervelocity impact. The main mechanism is that stainless metal fiber reinforced silica carbon matrix composites could disintegrate bigger projectile in the first debris cloud into smaller particles and translate super high point-energy into lower facing-energy that was called the second debris cloud. The hollow sphere materials showed excellent performance in reducing impact energy in which the impact pressure dropped to "zero" when they were impacted and collapsed. Porous silicon carbide materials showed a greater ability to reduce impacting energy than hollow silica sphere and carbon sphere. The fabrication processes for composite specimens designed by theoretical number simulations and predictions were also studied. The results of hypervelocity impact tests reveals that different pressure wall composite configurations have different abilities to prevent the perforation. The sandwich composite models in 18 mm thickness designed and manufactured by the author were not perforated by a 5.4 mm diameter aluminum projectile impacted at 4.2―7.4 km/s.
机译:这项研究提出了有关超高速抗冲击复合材料的复合结构模型的实验研究结果。研究了三明治模型在1-7 km / s弹丸超高速冲击载荷下的防穿孔能力。该模型涉及多种材料系统,双壁构造,作为冲击板的织物增强碳化硅陶瓷基复合材料,中空球体能量吸收材料,碳纤维织物和凯夫拉尔织物增强环氧基质复合材料作为压力墙。超高速冲击能量的下降方式与冲击速度,面对冲击的片材,多孔能量吸收材料的初始孔隙率和孔隙半径,夹层结构,压力墙复合构造和多壁结构有关。不锈钢金属纤维增强的二氧化硅碳基复合材料在超高速冲击下用作抗冲击板时,在吸收能量和转换能量方面表现出比聚合物基复合材料更好的性能。其主要机理是,不锈钢纤维增强的二氧化硅碳基复合材料可以将第一碎片云中较大的弹丸分解为较小的粒子,并将超高点能量转换为较低的面层能量,称为第二碎片云。中空球体材料在降低冲击能量方面表现出出色的性能,当冲击和塌陷时,冲击压力降至“零”。多孔碳化硅材料显示出比中空二氧化硅球和碳球更大的降低冲击能量的能力。还研究了通过理论数值模拟和预测设计的复合材料试样的制造过程。超高速冲击试验的结果表明,不同的压力墙复合构型具有不同的防穿孔能力。作者设计和制造的厚度为18 mm的三明治复合材料模型并未受到以4.2〜7.4 km / s的速度撞击的5.4 mm直径铝弹的打孔。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号