...
首页> 外文期刊>Composite Structures >Non-linear FE~2 multiscale simulation of damage, micro and macroscopic strains in polyamide 66-woven composite structures: Analysis and experimental validation
【24h】

Non-linear FE~2 multiscale simulation of damage, micro and macroscopic strains in polyamide 66-woven composite structures: Analysis and experimental validation

机译:聚酰胺66编织复合结构中的损伤,微观和宏观菌株的非线性Fe〜2多尺度模拟:分析和实验验证

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents an experimental approach aimed at analyzing and validating a two-scale nonlinear Finite Element (FE2) simulation of a 3D composite structure. The studied composite material consists of polyamide thermoplastic matrix, exhibiting viscoelastic-viscoplastic behavior with ductile damage, reinforced by woven glass fabric whereby inelastic and anisotropic damage behavior is considered. The multiscale parallel computation is founded on the periodic homogenization at the microscopic scale, which considers the geometric description of the reinforcement's architecture and accounts for time-dependent and non-linear local behavior of each constitutive phase. For the numerical implementation at microscopic and macroscopic scales, an advanced UMAT subroutine is developed and combined with a parallelization technique in the commercial software Abaqus/Standard. The multilevel computation is achieved simultaneously at both scales (microscopic and macroscopic) through an incremental scheme. Numerical results of the FE multiscale simulation are analyzed and compared with the experimental results obtained for different stacking sequence configurations of a 3D woven composite holed plate subjected to tension. Besides the good agreement between the experimental and the predicted load-displacement global responses, the numerical simulation of the macroscopic strain fields reasonably agrees with those measured experimentally through the Digital Image Correlation (DIC) technique. Furthermore, the performance and the capabilities of the multiscale (FE2) strategy are demonstrated getting access, at the microstructure scale, to the microscopic strain fields and the spatiotemporal distributions of the internal variables as well as the damage evolution in the polymer matrix and the reinforcement (yarns).
机译:本文介绍了一种实验方法,旨在分析和验证三维复合结构的双尺度非线性有限元(FE2)模拟。所研究的复合材料由聚酰胺热塑性基质组成,具有粘性粘弹性的粘弹性损伤,由织造玻璃织物增强,由此考虑绝体和各向异性损伤的损伤行为。多尺度并行计算成立于微观规模的周期性均匀化,该定量级别考虑了增强件架构的几何描述,并考虑了每个本构阶段的时间依赖性和非线性本地行为。对于显微镜和宏观尺度的数值实现,开发了先进的UMAT子程序并与商业软件ABAQUS /标准中的并行化技术组合。通过增量方案在两个尺度(微观和宏观)上同时实现多级计算。分析了Fe MultiScale模拟的数值结果,并与用于经受张力的3D编织复合孔板的不同堆叠序列配置获得的实验结果进行了比较。除了实验和预测的负载位移全局反应之间的良好一致之外,宏观应变场的数值模拟合理地通过数字图像相关(DIC)技术实验测量的那些。此外,多尺度(FE2)策略的性能和能力在微观结构尺度上进行了访问到微观菌株和内部变量的时空分布以及聚合物基质和加强件中的损伤演变(纱线)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号