...
首页> 外文期刊>Composite Structures >Inverse methodology for identification the thermal diffusivity and subsurface defect of CFRP composite by lock-in thermographic phase (LITP) profile reconstruction
【24h】

Inverse methodology for identification the thermal diffusivity and subsurface defect of CFRP composite by lock-in thermographic phase (LITP) profile reconstruction

机译:通过锁定热成像相(LITP)轮廓重建识别CFRP复合材料的热扩散率和表面缺陷的逆方法

获取原文
获取原文并翻译 | 示例
           

摘要

An inverse analysis methodology is developed to simultaneously identify the thermal diffusivities and subsurface defect of carbon fiber reinforced polymer (CFRP) laminate through lock-in thermographic phase (LITP) profile reconstruction. A hybrid algorithm that combines simulation annealing algorithm (SA) and Nelder-Mead simplex search method (NM) is proposed to minimize the objective function constructed by LITP profile for determination of the thermal diffusivities (alpha(x) and alpha(y)) and subsurface defect characteristics (size D and depth H-D). For the hybrid method, SA is used to find a better feasible initial guessed solution for NM. Numerical examples show that LITP has the merit of identifying the thermal diffusivities of CFRP laminate by inverse analysis. In comparison with SA and NM, respectively, the hybrid method can be converged to yield good estimates faster and more efficiently. Experimental and simulation LITP of defective regions are used to determine the thermal diffusivities and the size and depth of subsurface defect. The results show that the estimated thermal diffusivities and the size and depth of defect are in good agreement with the reference values, and the relative deviations are less than 5%. Nevertheless, this approach can only be applied for the determination of thermal diffusivities of CFRP laminate with subsurface defect. Crown Copyright (C) 2015 Published by Elsevier Ltd. All rights reserved.
机译:开发了一种逆分析方法,以通过锁定热成像相(LITP)轮廓重建同时识别碳纤维增强聚合物(CFRP)层压板的热扩散率和表面缺陷。提出了一种结合了模拟退火算法(SA)和Nelder-Mead单纯形搜索方法(NM)的混合算法,以最小化由LITP曲线构造的用于确定热扩散率(alpha(x)和alpha(y))的目标函数,以及地下缺陷特征(尺寸D和深度HD)。对于混合方法,SA用于为NM寻找更好的可行初始猜测解决方案。数值算例表明,LITP具有通过反分析确定CFRP层压板热扩散系数的优点。与SA和NM相比,混合方法可以收敛,可以更快,更有效地产生良好的估计。实验和仿真缺陷区域的LITP用于确定热扩散率以及表面缺陷的大小和深度。结果表明,估计的热扩散率,缺陷的大小和深度与参考值吻合良好,相对偏差小于5%。然而,这种方法只能用于确定具有表面缺陷的CFRP层压板的热扩散率。 Crown版权所有(C)2015,由Elsevier Ltd.发行。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号