首页> 外文期刊>Composite Structures >Multi-scale computational analysis of unidirectional carbon fiber reinforced polymer composites under various loading conditions
【24h】

Multi-scale computational analysis of unidirectional carbon fiber reinforced polymer composites under various loading conditions

机译:不同载荷条件下单向碳纤维增强聚合物复合材料的多尺度计算分析

获取原文
获取原文并翻译 | 示例
       

摘要

A multi-scale computational analysis based on representative volume element (RVE) modeling and molecular dynamics (MD) simulations is developed to investigate the microscopic failure mechanisms of unidirectional (UD) carbon fiber reinforced polymer (CFRP) composites. The average properties of the 200-nm thickness interphase region between fiber and matrix are characterized through MD simulations and an analytical gradient model. The results demonstrate that the interphase region has higher Young's modulus and strength, compared to the bulk matrix. This stiffened interphase region influences the composite response significantly. Specifically, the traditional two-phase model with zero-thickness interface fails to capture the stress-strain behavior compared to the experimental data. However, by adding the interphase region to a modified RVE model, the accuracy of simulation results will be improved significantly. Furthermore, a coupled experimental-computational micromechanics approach is adopted to calibrate and validate the cohesive parameters of the interface. By including the cohesive interface, our modified RVE model accurately captures the failure strength of the composites. Finally, different failure mechanisms for specimens are investigated using our multi-scale computational framework. The results show that the failure modes of UD CFRP composites are very complex and multiple failure mechanisms co-exist depending on the loading conditions, agreeing well with our experimental analyses.
机译:基于代表性体积元(RVE)建模和分子动力学(MD)模拟的多尺度计算分析被开发来研究单向(UD)碳纤维增强聚合物(CFRP)复合材料的微观破坏机理。纤维和基体之间的200 nm厚度的中间相区域的平均特性通过MD模拟和解析梯度模型进行了表征。结果表明,相相区域比块状基质具有更高的杨氏模量和强度。该硬化的相间区域显着影响复合响应。具体而言,与实验数据相比,具有零厚度界面的传统两相模型无法捕获应力应变行为。但是,通过将相间区域添加到修改的RVE模型中,可以显着提高仿真结果的准确性。此外,采用耦合的实验-计算微力学方法来校准和验证界面的内聚参数。通过包含内聚界面,我们改进的RVE模型可以准确地捕获复合材料的破坏强度。最后,使用我们的多尺度计算框架研究了标本的不同破坏机理。结果表明,UD CFRP复合材料的破坏模式非常复杂,并且根据载荷条件并存多种破坏机制,与我们的实验分析非常吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号