首页> 外文期刊>Components, Packaging and Manufacturing Technology, IEEE Transactions on >Experimental Analysis and FEM Simulation of Antigravity Loop-Shaped Heat Pipe for Radio Remote Unit
【24h】

Experimental Analysis and FEM Simulation of Antigravity Loop-Shaped Heat Pipe for Radio Remote Unit

机译:无线电遥控装置反重力环形热管的实验分析和有限元模拟

获取原文
获取原文并翻译 | 示例
       

摘要

This paper presents the thermal performance analysis of the antigravity loop-shaped heat pipe (AGLSHP) used for radio remote unit. The experiments are conducted by mounting the system vertically over a heat source set above the condenser with forced convection. The transit temperature distributions of the AGLSHP with two different antigravity lengths are measured and evaluated via increasing the input power from 10 to 100 W. Thermal resistance and effective thermal conductivity under steady state are both studied in this paper. The experimental observations are validated via ANSYS simulation. The results show that the maximum operating evaporator temperature of AGLSHP-400 is 12.5 °C higher than that of AGLSHP-300 when the heating load is 100 W. As the heat input increases, the total thermal resistance decreases first and then goes up, while the thermal conductivity shows the opposite tendency. The lowest values of the thermal resistance obtained are 0.20 °C/W for 400-mm antigravity length and 0.14 °C/W for 300-mm length. The heating load and the effective thermal conductivity of the heat pipe are critical to the accuracy of the simulation results. The simulation results are found in agreement with the experiment. The averaged discrepancy between the experimentally measured average temperature and the finite element method predicted average temperature at the evaporator is less than 4%.
机译:本文介绍了用于无线电遥控单元的反重力环形热管(AGLSHP)的热性能分析。通过在强制对流的情况下将系统垂直安装在冷凝器上方的热源上进行实验。通过将输入功率从10 W增加到100 W来测量和评估具有两种不同反重力长度的AGLSHP的过渡温度分布。本文研究了稳态下的热阻和有效导热率。通过ANSYS仿真验证了实验观察结果。结果表明,当加热负荷为100 W时,AGLSHP-400的最高工作蒸发器温度比AGLSHP-300的最高蒸发器温度高12.5°C。随着热量输入的增加,总热阻先降低然后升高,而导热率呈现相反的趋势。对于400毫米反重力长度,获得的最低热阻值为0.20°C / W,对于300毫米长度,则为0.14°C / W。热管的热负荷和有效导热系数对于仿真结果的准确性至关重要。仿真结果与实验吻合。实验测量的平均温度与有限元方法预测的蒸发器平均温度之间的平均差异小于4%。

著录项

  • 来源
  • 作者单位

    South China Academy of Advanced Optoelectronics, Institute of Electronic Paper Displays, South China Normal University, Guangzhou, China;

    Key Laboratory of Surface Functional Structure Manufacturing of Guangdong High Education Institutes, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China;

    School of Mechanical Engineering, Zhejiang University, Hangzhou, China;

    Key Laboratory of Surface Functional Structure Manufacturing of Guangdong High Education Institutes, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China;

    Key Laboratory of Surface Functional Structure Manufacturing of Guangdong High Education Institutes, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Heat sinks; Thermal resistance; Resistance heating; Heat transfer;

    机译:散热器;热阻;电阻加热;传热;
  • 入库时间 2022-08-17 23:55:00

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号