...
首页> 外文期刊>Communications in Numerical Methods in Engineering >Optimization methodology for the material assignation in bioprinted scaffolds to achieve the desired stiffness over time
【24h】

Optimization methodology for the material assignation in bioprinted scaffolds to achieve the desired stiffness over time

机译:生物印刷支架中材料分配的优化方法,以实现随时间推移所需的刚度

获取原文
获取原文并翻译 | 示例
           

摘要

The optimum scaffold for tissue engineering must guarantee the mechanical integrity in the damaged zone and ensure an appropriate stiffness to regulate the cellular function. For this to happen, scaffolds must be designed to match the stiffness of the native tissue. Moreover, the degradation rate in the case of bioresorbable materials must also be considered to fit the tissue regeneration rate. This paper presents a methodology based on design of experiments, finite element analysis, metamodels, and genetic algorithms to optimize the assignation of material in different sections of the scaffold to obtain the desired stiffness over time and comply with the constraints needed. The method applies an initial sampling focused on a modified Latin Hypercube strategy to obtain data from the simulations. These data are used in the next stages to generate the metamodels by using kriging. The predictions of the metamodels are used by the genetic algorithms to find the best estimated solutions. Different runs of the genetic algorithm drive the sampling, improving the accuracy of the surrogate models over the optimization process. Once the accuracy of the metamodels estimates is sufficient, a final genetic algorithm is applied to obtain the optimum design. This approach guarantees a low sampling effort and convergence to carry out the optimization process. The method allows the combination of discrete and continuous design variables in the optimization problem, and it can be applied both in solid and in hierarchical-based geometries.
机译:用于组织工程的最佳支架必须保证受损区域的机械完整性,并确保适当的硬度以调节细胞功能。为此,必须将支架设计为与天然组织的硬度相匹配。此外,在生物可吸收材料的情况下,降解速率还必须考虑到适合组织再生速率的要求。本文提出了一种基于实验设计,有限元分析,元模型和遗传算法的方法,以优化脚手架不同部分中材料的分配,以随时间获得所需的刚度并符合所需的约束。该方法将重点放在改进的Latin Hypercube策略上进行初始采样,以从模拟中获取数据。这些数据将在接下来的阶段中通过使用克里金法生成元模型。遗传算法使用元模型的预测来找到最佳的估计解。遗传算法的不同运行驱动采样,从而在优化过程中提高了替代模型的准确性。一旦元模型估计的准确性足够,就可以使用最终的遗传算法来获得最佳设计。这种方法可确保进行优化过程所需的采样工作量少且收敛。该方法允许在优化问题中组合离散和连续的设计变量,并且可以应用于实体几何和基于层次的几何中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号