...
【24h】

Biomolecular surface construction by PDE transform

机译:通过PDE变换构建生物分子表面

获取原文
获取原文并翻译 | 示例
           

摘要

This work proposes a new framework for the surface generation based on the partial differential equation (PDE) transform. The PDE transform has recently been introduced as a general approach for the mode decomposition of images, signals, and data. It relies on the use of arbitrarily high-order PDEs to achieve the time-frequency localization, control the spectral distribution, and regulate the spatial resolution. The present work provides a new variational derivation of high-order PDE transforms. The fast Fourier transform is utilized to accomplish the PDE transform so as to avoid stringent stability constraints in solving high-orde PDEs. As a consequence, the time integration of high-order PDEs can be done efficiently with the fast Fourier transform. The present approach is validated with a variety of test examples in two-dimensional and three-dimensional settings. We explore the impact of the PDE transform parameters, such as the PDE order and propagation time, on the quality of resulting surfaces. Additionally, we utilize a set of 10 proteins to compare the computational efficiency of the present surface generation method and a standard approach in Cartesian meshes. Moreover, we analyze the present method by examining some benchmark indicators of biomolecular surface, that is, surface area, surface-enclosed volume, solvation free energy, and surface electrostatic potential. A test set of 13 protein molecules is used in the present investigation. The electrostatic analysis is carried out via the Poisson-Boltzmann equation model. To further demonstrate the utility of the present PDE transform-based surface method, we solve the Poisson-Nernst-Planck equations with a PDE transform surface of a protein. Second-order convergence is observed for the electrostatic potential and concentrations. Finally, to test the capability and efficiency of the present PDE transform-based surface generation method, we apply it to the construction of an excessively large biomolecule, a virus surface capsid. Virus surface morphologies of different resolutions are attained by adjusting the propagation time. Therefore, the present PDE transform provides a multiresolution analysis in the surface visualization. Extensive numerical experiment and comparison with an established surface model indicate that the present PDE transform is a robust, stable, and efficient approach for biomolecular surface generation in Cartesian meshes.
机译:这项工作提出了一种基于偏微分方程(PDE)变换的曲面生成的新框架。最近引入了PDE变换,作为图像,信号和数据的模式分解的通用方法。它依赖于使用任意高阶PDE来实现时频定位,控制频谱分布和调节空间分辨率。本工作提供了高阶PDE变换的新变分派生。利用快速傅里叶变换来完成PDE变换,从而避免了求解高阶PDE时的严格稳定性约束。结果,可以通过快速傅立叶变换有效地完成高阶PDE的时间积分。本方法已在二维和三维环境中通过各种测试示例进行了验证。我们探索了PDE变换参数(例如PDE顺序和传播时间)对所得曲面质量的影响。此外,我们利用一组10种蛋白质来比较当前曲面生成方法和笛卡尔网格中的标准方法的计算效率。此外,我们通过检查生物分子表面的一些基准指标,即表面积,表面封闭体积,溶剂化自由能和表面静电势,来分析本方法。在本研究中使用了13个蛋白质分子的测试集。静电分析通过Poisson-Boltzmann方程模型进行。为了进一步证明当前基于PDE变换的表面方法的实用性,我们用蛋白质的PDE变换表面求解了Poisson-Nernst-Planck方程。观察到静电势和浓度的二阶收敛。最后,为了测试当前基于PDE转换的表面生成方法的能力和效率,我们将其应用于过大的生物分子(病毒表面衣壳)的构建。通过调整传播时间可以获得不同分辨率的病毒表面形态。因此,当前的PDE变换在表面可视化中提供了多分辨率分析。广泛的数值实验和与已建立的表面模型的比较表明,当前的PDE变换是笛卡尔网格中生物分子表面生成的可靠,稳定和有效的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号