...
首页> 外文期刊>Communications in Numerical Methods in Engineering >Nonlinear finite element simulations of injuries with free boundaries: Application to surgical wounds
【24h】

Nonlinear finite element simulations of injuries with free boundaries: Application to surgical wounds

机译:具有自由边界的损伤的非线性有限元模拟:在外科伤口中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

Wound healing is a process driven by biochemical and mechanical variables in which a new tissue is synthesised to recover original tissue functionality. Wound morphology plays a crucial role in this process, as the skin behaviour is not uniform along different directions. In this work, we simulate the contraction of surgical wounds, which can be characterised as elongated and deep wounds. Because of the regularity of this morphology, we approximate the evolution of the wound through its cross section, adopting a plane strain hypothesis. This simplification reduces the complexity of the computational problem; while allows for a thorough analysis of the role of wound depth in the healing process, an aspect of medical and computational relevance that has not yet been addressed. To reproduce wound contraction, we consider the role of fibroblasts, myofibroblasts, collagen and a generic growth factor. The contraction phenomenon is driven by cell-generated forces. We postulate that these forces are adjusted to the mechanical environment of the tissue where cells are embedded through a mechanosensing and mechanotransduction mechanism. To solve the nonlinear problem, we use the finite element method (FEM) and an updated Lagrangian approach to represent the change in the geometry. To elucidate the role of wound depth and width on the contraction pattern and evolution of the involved species, we analyse different wound geometries with the same wound area. We find that deeper wounds contract less and reach a maximum contraction rate earlier than superficial wounds.
机译:伤口愈合是由生化和机械变量驱动的过程,其中合成新组织以恢复原始组织功能。伤口形态在此过程中起着至关重要的作用,因为沿不同方向的皮肤行为不均匀。在这项工作中,我们模拟了手术伤口的收缩,其特征可以是细长的伤口和较深的伤口。由于这种形态的规律性,我们采用平面应变假设,通过其横截面来近似估计伤口的演变。这种简化降低了计算问题的复杂性;尽管可以深入分析伤口深度在愈合过程中的作用,但尚未解决医学和计算机相关性的一个方面。为了重现伤口收缩,我们考虑了成纤维细胞,成肌纤维细胞,胶原蛋白和通用生长因子的作用。收缩现象是由细胞产生的力驱动的。我们假设这些力通过机械感测和机械转导机制调节至组织嵌入细胞的机械环境。为了解决非线性问题,我们使用有限元方法(FEM)和更新的拉格朗日方法来表示几何形状的变化。为了阐明伤口深度和宽度对所涉及物种的收缩模式和进化的作用,我们分析了具有相同伤口面积的不同伤口几何形状。我们发现,较深的伤口比浅层伤口收缩更少,并且达到最大收缩率的时间更早。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号