...
首页> 外文期刊>Communications in Numerical Methods in Engineering >A multiscale approach for determining the morphology of endothelial cells at a coronary artery
【24h】

A multiscale approach for determining the morphology of endothelial cells at a coronary artery

机译:确定冠状动脉内皮细胞形态的多尺度方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The morphology of endothelial cells (ECs) may be an indication for determining atheroprone sites. Until now, there has been no clinical imaging technique to visualize the morphology of ECs in the arteries. The present study introduces a computational technique for determining the morphology of ECs. This technique is a multiscale simulation consisting of the artery scale and the cell scale. The artery scale is a fluid-structure interaction simulation. The input for the artery scale is the geometry of the coronary artery, that is, the dynamic curvature of the artery due to the cardiac motion, blood flow, blood pressure, heart rate, and the mechanical properties of the blood and the arterial wall, the measurements of which can be obtained for a specific patient. The results of the artery scale are wall shear stress (WSS) and cyclic strains as the mechanical stimuli of ECs. The cell scale is an inventive mass-and-spring model that is able to determine the morphological response of ECs to any combination of mechanical stimuli. The results of the multiscale simulation show the morphology of ECs at different locations of the coronary artery. The results indicate that the atheroprone sites have at least 1 of 3 factors: low time-averaged WSS, high angle of WSS, and high longitudinal strain. The most probable sites for atherosclerosis are located at the bifurcation region and lie on the myocardial side of the artery. The results also indicated that a higher dynamic curvature is a negative factor and a higher pulse pressure is a positive factor for protection against atherosclerosis.
机译:内皮细胞(EC)的形态可能是确定动脉粥样硬化位点的指标。迄今为止,还没有临床成像技术可以可视化动脉中EC的形态。本研究介绍了一种确定EC形态的计算技术。该技术是一种多尺度模拟,包括动脉尺度和细胞尺度。动脉尺度是一种流固耦合模拟。动脉标度的输入是冠状动脉的几何形状,即由于心脏运动,血液流动,血压,心率以及血液和动脉壁的机械特性而引起的动脉动态曲率,可以针对特定患者获得其测量值。动脉尺度的结果是壁切应力(WSS)和循环应变作为EC的机械刺激。细胞规模是本发明的质量和弹簧模型,其能够确定EC对机械刺激的任何组合的形态反应。多尺度模拟的结果显示了ECs在冠状动脉不同位置的形态。结果表明,动脉粥样硬化部位至少有3个因素中的1个:低时间平均WSS,高WSS角度和高纵向应变。动脉粥样硬化的最可能部位位于分叉区,位于动脉的心肌侧。结果还表明,较高的动态曲率是防止动脉粥样硬化的负因素,而较高的脉冲压力是防止动脉粥样硬化的正因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号