首页> 外文期刊>Communications in Numerical Methods in Engineering >Multiphoton microscope measurement–based biphasic multiscale analyses of knee joint articular cartilage and chondrocyte by using visco‐anisotropic hyperelastic finite element method and smoothed particle hydrodynamics method
【24h】

Multiphoton microscope measurement–based biphasic multiscale analyses of knee joint articular cartilage and chondrocyte by using visco‐anisotropic hyperelastic finite element method and smoothed particle hydrodynamics method

机译:粘滞各向异性超弹性有限元法和平滑粒子流体动力学法基于多光子显微镜的膝关节软骨和软骨细胞双相多尺度分析

获取原文
获取原文并翻译 | 示例
       

摘要

The articular cartilage of a knee joint has a variety of functions including dispersing stress and absorbing shock in the tissue and lubricating the surface region of cartilage. The metabolic activity of chondrocytes under the cyclic mechanical stimulations regenerates the morphology and function of tissues. Hence, the stress evaluation of the chondrocyte is a vital subject to assess the regeneration cycle in the normal walking condition and predict the injury occurrence in the accidents. Further, the threshold determination of stress for the chondrocytes activation is valuable for development of regenerative bioreactor of articular cartilage. In this study, in both macroscale and microscale analyses, the dynamic explicit finite element (FE) method was used for the solid phase and the smoothed particle hydrodynamics (SPH) method was used for the fluid phase. In the homogenization procedure, the representative volume element for the microscale finite element model was derived by using the multiphoton microscope measured 3D structure comprising 3 different layers: surface, middle, and deep layers. The layers had different anisotropic structural and rigidity characteristics because of the collagen fiber orientation. In both macroscale and microscale FE analyses, the visco-anisotropic hyperelastic constitutive law was used. Material properties were identified by experimentally determined stress-strain relationships of 3 layers. With respect to the macroscale and microscale SPH models for non-Newtonian viscous fluid, the previous observation results of interstitial fluid and proteoglycan were used to perform parameter identifications. Biphasic multiscale FE and SPH analyses were conducted under normal walking conditions. Therefore, the hydrostatic and shear stresses occurring in the chondrocytes caused by the compressive load and shear viscous flow were evaluated. These stresses will be used to design an ex-vivo bioreactor to regenerate the damaged articular cartilage, where chondrocytes are seeded in the culture chamber. To know the stress occurred on and in the chondrocytes is vitally important not only to understand the normal metabolic activity of the chondrocyte but also to develop a bioreactor of articular cartilage regeneration as the knee joint disease treatment.
机译:膝关节的关节软骨具有多种功能,包括在组织中分散应力和吸收震动以及润滑软骨的表面区域。在循环机械刺激下软骨细胞的代谢活性再生了组织的形态和功能。因此,软骨细胞的压力评估是评估正常步行条件下的再生周期并预测事故中伤害发生的重要课题。此外,针对软骨细胞活化的压力的阈值确定对于关节软骨的再生生物反应器的开发是有价值的。在这项研究中,无论是在宏观分析还是微观分析中,固相均采用动态显式有限元(FE)方法,而液相则采用平滑粒子流体动力学(SPH)方法。在均质化过程中,使用多光子显微镜测量的3D结构(包括3个不同的层:表面层,中间层和深层),得出了微观有限元模型的代表性体积元素。由于胶原纤维的取向,这些层具有不同的各向异性结构和刚性特征。在宏观和微观有限元分析中,都使用了黏各向异性各向异性超弹性本构律。通过实验确定的3层应力-应变关系来确定材料性能。对于非牛顿粘性流体的宏观和微观SPH模型,间质液和蛋白聚糖的先前观察结果用于进行参数识别。在正常的步行条件下进行了双相多尺度FE和SPH分析。因此,评估了由压缩载荷和剪切粘性流引起的软骨细胞中发生的静水压力和剪切应力。这些压力将用于设计离体生物反应器,以再生受损的关节软骨,软骨细胞植入培养室中。知道软骨细胞上和之中发生的压力不仅对于了解软骨细胞的正常代谢活性,而且对于开发关节软骨再生的生物反应器作为膝关节疾病的治疗至关重要。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号