首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >A fractal derivative model for the characterization of anomalous diffusion in magnetic resonance imaging
【24h】

A fractal derivative model for the characterization of anomalous diffusion in magnetic resonance imaging

机译:分形导数模型,用于表征磁共振成像中的异常扩散

获取原文
获取原文并翻译 | 示例
           

摘要

Non-Gaussian (anomalous) diffusion is wide spread in biological tissues where its effects modulate chemical reactions and membrane transport. When viewed using magnetic resonance imaging (MRI), anomalous diffusion is characterized by a persistent or 'long tail' behavior in the decay of the diffusion signal. Recent MRI studies have used the fractional derivative to describe diffusion dynamics in normal and post-mortem tissue by connecting the order of the derivative with changes in tissue composition, structure and complexity. In this study we consider an alternative approach by introducing fractal time and space derivatives into Fick's second law of diffusion. This provides a more natural way to link sub-voxel tissue composition with the observed MRI diffusion signal decay following the application of a diffusion-sensitive pulse sequence. Unlike previous studies using fractional order derivatives, here the fractal derivative order is directly connected to the Hausdorff fractal dimension of the diffusion trajectory. The result is a simpler, computationally faster, and more direct way to incorporate tissue complexity and microstructure into the diffusional dynamics. Furthermore, the results are readily expressed in terms of spectral entropy, which provides a quantitative measure of the overall complexity of the heterogeneous and multi-scale structure of biological tissues. As an example, we apply this new model for the characterization of diffusion in fixed samples of the mouse brain. These results are compared with those obtained using the mono-exponential, the stretched exponential, the fractional derivative, and the diffusion kurtosis models. Overall, we find that the order of the fractal time derivative, the diffusion coefficient, and the spectral entropy are potential biomarkers to differentiate between the microstructure of white and gray matter. In addition, we note that the fractal derivative model has practical advantages over the existing models from the perspective of computational accuracy and efficiency. (C) 2016 Elsevier B.V. All rights reserved.
机译:非高斯(异常)扩散在生物组织中广泛传播,其作用调节化学反应和膜运输。当使用磁共振成像(MRI)进行观察时,异常扩散的特征在于扩散信号衰减中的持续或“长尾巴”行为。最近的MRI研究使用分数导数通过将导数的顺序与组织组成,结构和复杂性的变化联系起来,描述了正常和验尸组织中的扩散动力学。在这项研究中,我们考虑了将分形时间和空间导数引入菲克第二扩散定律的替代方法。这提供了一种更自然的方法,可在应用扩散敏感脉冲序列后将亚体素组织成分与观察到的MRI扩散信号衰减联系起来。与以前使用分数阶导数的研究不同,此处的分数阶导数与扩散轨迹的Hausdorff分形维数直接相关。结果是将组织复杂性和微结构纳入扩散动力学的更简单,计算更快和更直接的方法。此外,结果很容易用谱熵表示,这提供了生物组织异质和多尺度结构总体复杂程度的定量度量。例如,我们将这种新模型用于表征小鼠大脑固定样本中的扩散。将这些结果与使用单指数,拉伸指数,分数导数和扩散峰度模型获得的结果进行比较。总的来说,我们发现分形时间导数,扩散系数和光谱熵的顺序是区分白质和灰质微观结构的潜在生物标记。另外,从计算精度和效率的角度来看,分形导数模型比现有模型具有实际优势。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号