...
首页> 外文期刊>IEEE Transactions on Communications >Physics-Based Modeling and Scalable Optimization of Large Intelligent Reflecting Surfaces
【24h】

Physics-Based Modeling and Scalable Optimization of Large Intelligent Reflecting Surfaces

机译:基于物理的大型智能反射曲面的建模与可扩展优化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Intelligent reflecting surfaces (IRSs) have the potential to transform wireless communication channels into smart reconfigurable propagation environments. To realize this new paradigm, the passive IRSs have to be large, especially for communication in far-field scenarios, so that they can compensate for the large end-to-end path-loss, which is caused by the multiplication of the individual path-losses of the transmitter-to-IRS and IRS-to-receiver channels. However, optimizing a large number of sub-wavelength IRS elements imposes a significant challenge for online transmission. To address this issue, in this article, we develop a physics-based model and a scalable optimization framework for large IRSs. The basic idea is to partition the IRS unit cells into several subsets, referred to as tiles, model the impact of each tile on the wireless channel, and then optimize each tile in two stages, namely an offline design stage and an online optimization stage. For physics-based modeling, we borrow concepts from the radar literature, model each tile as an anomalous reflector, and derive its impact on the wireless channel for a given phase shift by solving the corresponding integral equations for the electric and magnetic vector fields. In the offline design stage, the IRS unit cells of each tile are jointly designed for the support of different transmission modes, where each transmission mode effectively corresponds to a given configuration of the phase shifts that the unit cells of the tile apply to an impinging electromagnetic wave. In the online optimization stage, the best transmission mode of each tile is selected such that a desired quality-of-service (QoS) criterion is maximized. We consider an exemplary downlink system and study the minimization of the base station (BS) transmit power subject to QoS constraints for the users. Since the resulting mixed-integer programming problem for joint optimization of the BS beamforming vectors and the tile transmission modes is non-convex, we derive two efficient suboptimal solutions, which are based on alternating optimization and a greedy approach, respectively. We show that the proposed modeling and optimization framework can be used to efficiently optimize large IRSs comprising thousands of unit cells.
机译:智能反射表面(IRS)具有将无线通信信道转换为智能可重新配置的传播环境。为了实现这一新的范例,被动IRS必须大,特别是对于远场方案的通信,因此它们可以补偿大的端到端路径损失,这是由各个路径的乘法引起的 - 发射机到IRS和IRS到接收器通道的开头。然而,优化大量子波长IRS元素对在线​​传输施加了重大挑战。要解决此问题,请在本文中,我们开发基于物理的模型和一个可扩展的大型IRS的优化框架。基本思想是将IRS单元电池分区为几个子集,称为瓷砖,为无线信道上的每个图块的影响模型,然后在两个阶段中优化每个图块,即离线设计阶段和在线优化阶段。对于基于物理的建模,我们从雷达文献中借用概念,将每个瓦片模型为异常反射器,通过求解电磁和磁矢量场的相应积分方程来导出对给定相移的给定相移的影响。在离线设计阶段,每个瓦片的IRS单元单元共同设计用于支持不同传输模式的支持,其中每个传输模式有效地对应于相移的给定配置,即瓦片的单元电池适用于撞击电磁器海浪。在在线优化阶段,选择每个瓦片的最佳传输模式,使得所需的服务质量(QoS)标准最大化。我们考虑示例性下行链路系统,并研究基站(BS)发射功率对用户进行QoS约束的最小化。由于对BS波束成形向量的联合优化的产生的混合整数编程问题是非凸的,因此我们得出了两个有效的次优解决方案,它们分别基于交替优化和贪婪的方法。我们表明,所提出的建模和优化框架可用于有效地优化包括数千个单位单元的大型IRS。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号