首页> 外文期刊>Combustion Science and Technology >NUMERICAL MODELING OF THE PROPAGATING FLAME AND KNOCK OCCURRENCE IN SPARK-IGNITION ENGINES
【24h】

NUMERICAL MODELING OF THE PROPAGATING FLAME AND KNOCK OCCURRENCE IN SPARK-IGNITION ENGINES

机译:火花点火发动机中火焰传播和拐点出现的数值模拟

获取原文
获取原文并翻译 | 示例
       

摘要

The present paper reports multidimensional numerical simulations of knock occurrence in internal combustion engines. Knock occurrence in spark-ignition engines was examined within the context of a model of autoignition of hydrocarbon/air mixture, which has been extended by including chemical reactions for the propagating flames and an extended chemical model for the cool flames. Special attention was given to the influence of the propagating flame on the autoignition onset. Knocking occurrence is the self-ignition of the end gas as a result of combined effects of the end-gas compression by the moving piston in the compression stroke and by the accelerating propagating flame and expanding combustion products. It is recognized that the autoignition onset is accompanied by an acceleration of the propagating flame that acts as an accelerating piston emanating pressure waves in the end gas. Given the initial fuel/air mixture concentration, temperature, and pressure, the developed model was used to calculate temperature, pressure, species concentration as a function of crank angle, combustion mixture, exhaust gas recycled and engine speed, and the time of the autoignition onset. The model was validated using the experimental data obtained with a Ricardo test engine and excellent agreement was achieved between the modeling predictions and the observed experimental data. In particular it was shown that the increase of the engine speed results in the decrease of the knock onset tendency, allowing the engine to operate with higher compression ratio without knocking.
机译:本文报道了内燃机爆震发生的多维数值模拟。在碳氢化合物/空气混合物自燃模型的背景下检查了火花点火发动机中的爆震发生,该模型已通过包括传播火焰的化学反应和冷火焰的扩展化学模型得到扩展。特别注意了蔓延的火焰对自燃开始的影响。爆震的发生是由于终端气体在压缩冲程中通过移动的活塞以及加速的燃烧火焰和膨胀的燃烧产物对终端气体压缩的综合作用而导致的终端气体的自燃。公认的是,自燃开始伴随着传播火焰的加速,该传播火焰起着加速活塞的作用,散发了终端气体中的压力波。在给定初始燃料/空气混合物浓度,温度和压力的情况下,使用开发的模型来计算温度,压力,曲柄角,燃烧混合物,废气再循环和发动机转速以及自燃时间的函数中的物质浓度。发作。使用Ricardo测试引擎获得的实验数据对模型进行了验证,并且建模预测与观察到的实验数据之间取得了极好的一致性。特别地,显示出发动机速度的增加导致爆震开始趋势的减小,从而允许发动机以更高的压缩比运转而不爆震。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号