首页> 外文期刊>Combustion Science and Technology >DYNAMICS OF LEAN-PREMIXED TURBULENT COMBUSTION AT HIGH TURBULENCE INTENSITIES
【24h】

DYNAMICS OF LEAN-PREMIXED TURBULENT COMBUSTION AT HIGH TURBULENCE INTENSITIES

机译:高湍流强度下稀薄湍流燃烧的动力学

获取原文
获取原文并翻译 | 示例
       

摘要

Premixed turbulent flames of methane-air stabilized on a Bunsen-type burner were studied to investigate the structure of the flame front at a wide range of turbulence intensities. The nondimensional turbulence rms velocity, rms velocity divided by the laminar flame speed, covered the range from about 3 to 24. The equivalence ratio was varied from 0.6 to stoichio-metric. The flame front data were obtained using planar Rayleigh imaging, and particle image velocimetry was used to measure instantaneous velocity field for the experimental conditions studied. Flame front thickness increased slightly with increasing nondimensional turbulence rms velocity. There was no significant difference inflame thickening whether the flame thickness was evaluated at progress variable 0.5, corresponding to the reaction zone, or 0.3, corresponding to the preheat zone. Flame front curvature decreased with increasing turbulence rms velocity. Flame front curvature statistics displayed a Gaussian-like distribution, which centered about zero for all the flame conditions studied during the investigation. Flame surface densities evaluated from flame front images showed almost no dependence on the nondimensional turbulence intensity. Flame surface densities integrated over the flame brush volume also did not show any sensitivity to the nondimensional turbulence rms velocity. This was discussed in the framework of a flame surface density-based turbulent premixed flame propagation closure model. The implication is that the conceptual increase in flame surface density with turbulence may not be the dominant mechanism for flame velocity enhancement in turbulent combustion in the region specified as the flamelet combustion regime by the current turbulent premixed combustion diagrams. Further, the applicability of the flamelet approach may be limited to a much smaller range of conditions than presently believed.
机译:研究了在本生型燃烧器上稳定的甲烷-空气的预混湍流火焰,以研究在宽范围的湍流强度下火焰前沿的结构。无量纲湍流均方根速度(均方根速度除以层流火焰速度)的范围约为3到24。当量比从0.6到化学计量。使用平面瑞利成像获得火焰前锋数据,并使用粒子图像测速仪测量所研究的实验条件下的瞬时速度场。火焰前沿厚度随无量纲湍流均方根速度的增加而略有增加。无论火焰厚度是在进度变量0.5(对应于反应区域)还是0.3(对应于预热区域)下评估的,火焰厚度都没有显着差异。火焰前曲率随湍流均方根速度的增加而降低。火焰前曲率统计数据显示出类似高斯的分布,在调查期间研究的所有火焰条件下,其中心都在零附近。从火焰前像评估的火焰表面密度几乎不依赖于无量纲湍流强度。集成在火焰刷体积上的火焰表面密度也没有显示出对无量纲湍流均方根速度的任何敏感性。在基于火焰表面密度的湍流预混火焰传播封闭模型的框架内对此进行了讨论。这意味着在湍流燃烧中火焰表面密度的概念性增加可能不是当前燃烧预混燃烧图指定为小火焰燃烧区域的湍流燃烧中火焰速度增强的主要机制。此外,与目前认为的相比,小火焰方法的适用性可能被限制在小得多的条件范围内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号