...
首页> 外文期刊>Combustion Science and Technology >Experimental Investigation of Turbulent Flame Propagation and Pressure Oscillation in a Constant Volume Chamber Equipped With an Orifice Plate
【24h】

Experimental Investigation of Turbulent Flame Propagation and Pressure Oscillation in a Constant Volume Chamber Equipped With an Orifice Plate

机译:装有孔板的定容室中湍流火焰传播和压力振荡的实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, the main contribution is an understanding of different combustion phenomena involving flame acceleration, flame propagation, and the pressure oscillation resulting from flame-shock interactions. These physical phenomena were experimentally studied using a newly developed confined combustion chamber equipped with one or two orifice plates. The results showed that there are five stages of flame propagation when a laminar flame passes through the orifice plate in a confined space. These include the deceleration of the laminar flame, jet flame formation and rapid acceleration, deceleration of the flame, turbulent flame formation and acceleration, and turbulent flame propagation in the end-gas region. Flame acceleration and pressure oscillation were found to be strongly related to the aperture size of the orifice plate. The high amplitudes of pressure oscillations were found to be the results of two combustion mechanisms: the end gas auto-ignition and the interactions between the accelerated turbulent flame and shock wave. To further accelerate the flame and promote stronger disturbance in the end gas, another identical orifice plate was employed. Subsequently, strong flame-shock interaction caused end-gas auto-ignition with an extremely high-amplitude pressure oscillation. Eventually, the maximum amplitude of pressure oscillation exceeded 8 MPa as end-gas auto-ignition occurred in the end region of the combustion chamber.
机译:在这项工作中,主要的贡献是对不同燃烧现象的理解,包括火焰加速,火焰传播以及由火焰-冲击相互作用产生的压力振荡。这些物理现象是使用配备有一个或两个孔板的新开发的密闭燃烧室进行实验研究的。结果表明,当层状火焰在狭窄的空间中通过孔板时,火焰传播分为五个阶段。这些措施包括层流火焰的减速,射流火焰的形成和快速加速,火焰的减速,湍流的火焰形成和加速以及湍流火焰在终端气体区域的传播。发现火焰加速和压力振荡与孔板的孔径大小密切相关。发现压力振荡的高幅度是两种燃烧机制的结果:终端气体自燃以及加速的湍流火焰与冲击波之间的相互作用。为了进一步加速火焰并增强尾气中的干扰,使用了另一个相同的孔板。随后,强烈的火焰-冲击相互作用导致最终气体自燃,并产生极高的振幅振荡。最终,由于在燃烧室的端部区域发生了终端气体自动点火,压力振荡的最大振幅超过了8 MPa。

著录项

  • 来源
    《Combustion Science and Technology》 |2018年第3期|252-268|共17页
  • 作者单位

    Tianjin Univ, State Key Lab Engines, 92 Weijin Rd, Tianjin 300072, Peoples R China;

    Tianjin Univ, State Key Lab Engines, 92 Weijin Rd, Tianjin 300072, Peoples R China;

    Tianjin Univ, State Key Lab Engines, 92 Weijin Rd, Tianjin 300072, Peoples R China;

    Tianjin Univ, State Key Lab Engines, 92 Weijin Rd, Tianjin 300072, Peoples R China;

    Tianjin Univ, State Key Lab Engines, 92 Weijin Rd, Tianjin 300072, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Auto-ignition; Flame; Orifice plate; Pressure oscillation; Shock wave;

    机译:自燃;火焰;分流板;压力振荡;冲击波;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号