首页> 外文期刊>Combustion and Flame >Turbulence radiation interaction in Reynolds-averaged Navier-Stokes simulations of nonpremixed piloted turbulent laboratory-scale flames
【24h】

Turbulence radiation interaction in Reynolds-averaged Navier-Stokes simulations of nonpremixed piloted turbulent laboratory-scale flames

机译:非预混引燃湍流实验室规模火焰的雷诺平均Navier-Stokes模拟中的湍流辐射相互作用

获取原文
获取原文并翻译 | 示例
       

摘要

Numerical simulation results are presented for two axisymmetric, nonluminous turbulent piloted jet diffusion flames: Sandia Flame D (SFD) and Delft Flame III (DFIII). Turbulence is represented by a Reynolds stress transport model, while chemistry is modeled by means of steady laminar flamelets. We use the preassumed PDF approach for turbulence-chemistry interaction. A weighted sum of gray gases model is used for the gas radiative properties. The radiative transfer equation is solved using the discrete ordinates method in the conservative finite-volume formulation. The radiative loss leads to a decrease in mean temperature, but does not significantly influence the flow and mixing fields, in terms either of mean values or of rms values of fluctuations. A systematic analysis of turbulence-radiation interaction (TRI) is carried out. By considering five different TRI formulations, and comparing also with a simple optically thin model, individual TRI contributions are isolated and quantified. For both flames, effects are demonstrated of (1) influence of temperature fluctuations on the mean Planck function, (2) temperature and composition fluctuations on the mean absorption coefficient, and (3) correlation between absorption coefficient and Planck function. The strength of the last effect is stronger in DFIII than in SFD, because of stronger turbulence-chemistry interaction and lower mean temperature in DFIII. The impact of the choice of TRI model on the prediction of the temperature-sensitive minor species NO is determined in a postprocessing step with fixed flow and mixing fields. Best agreement for NO is obtained using the most complete representation of TRI.
机译:给出了两种轴对称非发光湍流引燃射流扩散火焰的数值模拟结果:桑迪亚火焰D(SFD)和代尔夫特火焰III(DFIII)。湍流由雷诺应力传输模型表示,而化学过程则由稳定的层流小火焰建模。我们使用假定的PDF方法进行湍流-化学相互作用。灰色气体的加权总和模型用于气体辐射特性。在保守的有限体积公式中,使用离散坐标法求解辐射传递方程。辐射损耗会导致平均温度降低,但无论是平均值还是波动均方根值,均不会显着影响流场和混合场。进行了湍流-辐射相互作用(TRI)的系统分析。通过考虑五种不同的TRI公式,并与简单的光学薄模型进行比较,可以分离和量化各个TRI贡献。对于两种火焰,都证明了以下影响:(1)温度波动对平均普朗克函数的影响;(2)温度和成分波动对平均吸收系数的影响;以及(3)吸收系数与普朗克函数之间的相关性。在DFIII中,最后效应的强度比在SFD中强,这是因为湍流-化学相互作用更强,并且DFIII中的平均温度更低。在固定流量和混合场的后处理步骤中,确定TRI模型的选择对温度敏感次要NO预测的影响。使用TRI的最完整表示形式可以获得NO的最佳协议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号