首页> 外文学位 >Detailed modeling of soot formation and turbulence-radiation interactions in turbulent jet flames.
【24h】

Detailed modeling of soot formation and turbulence-radiation interactions in turbulent jet flames.

机译:湍流射流火焰中烟尘形成和湍流-辐射相互作用的详细模型。

获取原文
获取原文并翻译 | 示例

摘要

Detailed radiation modeling of turbulent sooting flames faces a number of challenges. Principal among these have been been a lack of good models for predicting soot formation and effective means to capture turbulence-chemistry interactions in soot subprocesses. Uncertainties in measurement and prediction of soot properties has also been a problem. Radiative heat transfer becomes important in combustion environments due to the very high temperatures encountered and has not yet been studied in sufficient detail in the case of luminous (i.e., sooting) flames. A comprehensive approach for modeling turbulent reacting flows, including detailed chemistry, radiation and soot models with detailed closures for turbulence-chemistry interactions (TCI) and turbulence-radiation interactions (TRI) is developed in this work. A review of up-to-date literature on turbulent combustion modeling, turbulence-radiation interactions and soot modeling is given. A transported probability density function (PDF) approach is used to model turbulence-chemistry interactions and extended to include soot formation. Nongray gas and soot radiation is modeled using a photon Monte Carlo (PMC) method coupled with the PDF method. Soot formation is modeled based on the method of moments (MOM) approach with interpolative closure.;Optimal soot submodel parameters are identified based on comparison of model predictions with experimental data from various laminar premixed and (opposed) diffusion flames. These parameters (including gas-phase chemistry) are applied to turbulent flames without further "tuning." Six turbulent jet flames with Reynolds numbers varying from 6700 to 15000, varying fuel types---pure ethylene, 90% methane-10% ethylene blend and different oxygen concentrations in the oxidizer stream from 21%O2 (air) to 55%O 2, are simulated. The predicted soot volume fractions, temperature and radiative wall fluxes (when available) are compared with experiments. All the simulations are carried out with a single set of parameters for all models involved, without specific adjustments. Very encouraging agreement is found for most of the quantities, representing a significant step forward in modeling turbulent sooting flames. A detailed analysis of the radiation characteristics of these flames is also undertaken. It is found that emission TRI was generally important for all the flames. In the laboratory scale flames, including TRI increases the radiative loss from the flame by up to 90%. Absorption TRI is found to be unimportant in laboratory-scale flames, but becomes important in the large (industrial scale) flame that was studied numerically.
机译:湍流烟尘火焰的详细辐射建模面临许多挑战。其中主要的原因是缺乏用于预测烟灰形成的良好模型以及捕获烟尘子过程中湍流-化学相互作用的有效手段。烟尘特性的测量和预测中的不确定性也是一个问题。由于遇到非常高的温度,辐射热传递在燃烧环境中变得很重要,并且在发光(即烟))火焰的情况下尚未进行足够详细的研究。在这项工作中,开发了一种用于对湍流反应流进行建模的综合方法,包括详细的化学,辐射和烟灰模型,以及对湍流-化学相互作用(TCI)和湍流-辐射相互作用(TRI)的详细封闭。本文综述了湍流燃烧模型,湍流-辐射相互作用和烟尘模型的最新文献。运输概率密度函数(PDF)方法用于模拟湍流-化学相互作用,并扩展到包括烟灰形成。 Nongray气体和烟尘辐射是使用光子蒙特卡罗(PMC)方法和PDF方法结合建模的。烟灰的形成是基于具有内插封闭的矩量法(MOM)进行建模的;基于模型预测与来自各种层流预混和(相对)扩散火焰的实验数据的比较,确定了最佳的烟灰子模型参数。这些参数(包括气相化学反应)无需进一步的“调整”即可应用于湍流火焰。雷诺数从6700到15000不等的六种湍流喷射火焰,燃料类型不同-纯乙烯,90%甲烷-10%乙烯混合物,氧化剂流中的氧气浓度从21%O2(空气)到55%O 2 ,是模拟的。将预测的烟灰体积分数,温度和辐射壁通量(如果有)与实验进行比较。对于所有涉及的模型,所有仿真都使用一组参数进行,而无需进行特定调整。对于大多数数量,发现达成了令人鼓舞的协议,这代表了在模拟湍流烟灰火焰方面迈出的重要一步。还对这些火焰的辐射特性进行了详细分析。已经发现,排放TRI对于所有火焰通常都是重要的。在实验室规模的火焰中,包括TRI在内,火焰的辐射损失最多可增加90%。已发现吸收TRI在实验室规模的火焰中并不重要,但在数值研究的大型(工业规模)火焰中变得很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号