首页> 外文期刊>Combustion and Flame >Linear eddy mixing based tabulation and artificial neural networks for large eddy simulations of turbulent flames
【24h】

Linear eddy mixing based tabulation and artificial neural networks for large eddy simulations of turbulent flames

机译:基于线性涡流混合的列表和人工神经网络,用于湍流火焰的大涡流模拟

获取原文
获取原文并翻译 | 示例
           

摘要

A large eddy simulation (LES) sub-grid model is developed based on the artificial neural network (ANN) approach to calculate the species instantaneous reaction rates for multi-step, multi-species chemical kinetics mechanisms. The proposed methodology depends on training the ANNs off-line on a thermo-chemical database representative of the actual composition and turbulence (but not the actual geometrical problem) of Mnterest, and later using them to replace the stiff ODE solver (direct integration (DI)) to calculate the reaction rates in the sub-grid. The thermo-chemical database is tabulated with respect to the thermodynamic state vector without any reduction in the number of state variables. The thermochemistry is evolved by stand-alone linear eddy mixing (LEM) model simulations under both premixed and non-premixed conditions, where the unsteady interaction of turbulence with chemical kinetics is included as a part of the training database. The proposed methodology is tested in LES and in stand-alone LEM studies of three distinct test cases with different reduced mechanisms and conditions. LES of premixed flame-turbulence-vortex interaction provides direct comparison of the proposed ANN method against Dl and ANNs trained on thermo-chemical database created using another type of tabulation method. It is shown that the ANN trained on the LEM database can capture the correct flame physics with accuracy comparable to DI, which cannot be achieved by ANN trained on a laminar premix flame database. A priori evaluation of the ANN generality within and outside its training domain is carried out using stand-alone LEM simulations as well. Results in general are satisfactory, and it is shown that the ANN provides considerable amount of memory saving and speed-up with reasonable and reliable accuracy. The speed-up is strongly affected by the stiffness of the reduced mechanism used for the computations, whereas the memory saving is considerable regardless.
机译:基于人工神经网络(ANN)方法,开发了大型涡模拟(LES)子网格模型,以计算多步,多物种化学动力学机制的物种瞬时反应速率。拟议的方法取决于在代表化学成分Mnterest的实际组成和湍流(但不是实际的几何问题)的热化学数据库上离线训练ANN,然后使用它们代替刚性ODE求解器(直接积分(DI ))计算子网格中的反应速率。根据热力学状态向量将热化学数据库制成表格,而不会减少状态变量的数量。通过在预混合和非预混合条件下的独立线性涡流混合(LEM)模型模拟​​来发展热化学,其中湍流与化学动力学的不稳定相互作用被包括在训练数据库中。在LES和具有不同简化机制和条件的三个不同测试案例的独立LEM研究中,对所提出的方法进行了测试。预混合火焰-湍流-涡旋相互作用的LES提供了拟议的ANN方法与Dl和在使用另一种列表方法创建的热化学数据库中训练的ANN的直接比较。结果表明,在LEM数据库上训练的ANN可以以与DI相当的精度捕获正确的火焰物理学,而在层状预混火焰数据库上训练的ANN无法实现。还可使用独立的LEM仿真对ANN通用性进行训练领域内外的先验评估。总体而言,结果令人满意,并且表明ANN以合理且可靠的精度提供了大量内存节省和加速功能。加速很大程度上受到用于计算的简化机构的刚度的影响,而无论如何,内存节省都是可观的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号