首页> 外文期刊>Combustion and Flame >Redesigning combustion modeling algorithms for the Graphics Processing Unit (GPU): Chemical kinetic rate evaluation and ordinary differential equation integration
【24h】

Redesigning combustion modeling algorithms for the Graphics Processing Unit (GPU): Chemical kinetic rate evaluation and ordinary differential equation integration

机译:重新设计图形处理单元(GPU)的燃烧建模算法:化学动力学速率评估和常微分方程集成

获取原文
获取原文并翻译 | 示例
       

摘要

Detailed modeling of complex combustion kinetics remains challenging and often intractable, due to prohibitive computational costs incurred when solving the associated large kinetic mechanisms. The Graphics Processing Unit (GPU), originally designed for graphics rendering on computer and gaming systems, has recently emerged as a powerful, cost-effective supplement to the Central Processing Unit (CPU) for dramatically accelerating scientific computations. Complex scientific computations are now being performed on the GPU in several research fields, such as quantum chemistry, molecular dynamics, and atmospheric modeling. Here, we present methods for exploiting the highly parallel structure of GPUs for combustion modeling. This paper outlines simple algorithm revisions that can be applied to the majority of existing combustion modeling algorithms for GPU computations. Significant simulation acceleration and predictive capability enhancements were obtained by using these CPU-enhanced algorithms for reaction rate evaluation and in ODE integration. For the demonstrations, we implemented the rate evaluation revisions in CHEMKIN and the ODE integration revisions in DASAC and DVODE and we tested the performance for simulating constant-volume ignition using SENKIN. The simulations using the revised algorithms are more than an order of magnitude faster than the corresponding CPU-only simulations, even for a low-end (double-precision) graphics card. Additionally, the computational time scales less than quadratically with the number of chemical species in the kinetic mechanism when using the GPU, as compared to the super-quadratic scaling normally seen with CPU-only chemical kinetics computations; and the GPU-based revisions do not involve approximations to the detailed kinetics. An analysis of the growth rates of combustion mechanism sizes versus computational capabilities of CPUs and GPUs further reveals the important role that GPUs are expected to play in the future of combustion modeling. Finally, we briefly outline practical steps for effectively transitioning from CPU-only to GPU-enhanced combustion modeling.
机译:由于解决相关的大型动力学机理时会产生过高的计算成本,因此复杂燃烧动力学的详细建模仍然具有挑战性,而且通常难以解决。图形处理单元(GPU)最初是为在计算机和游戏系统上进行图形渲染而设计的,最近又成为中央处理单元(CPU)的强大,经济高效的补充,可以显着加速科学计算。现在,在多个研究领域(例如量子化学,分子动力学和大气建模)上,正在GPU上执行复杂的科学计算。在这里,我们介绍了利用GPU的高度并行结构进行燃烧建模的方法。本文概述了简单的算法修订版,这些修订版可应用于大多数现有的燃烧建模算法进行GPU计算。通过使用这些CPU增强的算法进行反应速率评估和ODE集成,可以显着提高仿真速度和预测能力。对于演示,我们在CHEMKIN中实现了费率评估修订版,在DASAC和DVODE中实现了ODE集成修订版,并测试了使用SENKIN模拟恒定体积点火的性能。使用修订后的算法进行的仿真比相应的仅使用CPU的仿真快一个数量级以上,即使对于低端(双精度)图形卡也是如此。此外,与仅使用CPU进行化学动力学计算时通常看到的超二次方缩放比例相比,使用GPU时,计算时间的缩放比例小于动力学机制中化学物种数量的平方。基于GPU的修订版不包含详细动力学的近似值。对燃烧机构大小的增长率与CPU和GPU的计算能力的分析进一步揭示了GPU在未来的燃烧建模中有望发挥的重要作用。最后,我们简要概述了有效地从仅CPU转换为GPU增强的燃烧建模的实际步骤。

著录项

  • 来源
    《Combustion and Flame》 |2011年第5期|p.836-847|共12页
  • 作者单位

    Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;

    Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;

    Aerodyne Research, Inc., Billerica, MA 01821, USA;

    Aerodyne Research, Inc., Billerica, MA 01821, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    combustion modeling; gpu; parallel computation; cuda; chemical kinetics;

    机译:燃烧模型gpu;并行计算uda化学动力学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号