首页> 外文期刊>Combustion and Flame >A numerical study of vortex interactions with flames developing from ignition kernels in lean methane/air mixtures
【24h】

A numerical study of vortex interactions with flames developing from ignition kernels in lean methane/air mixtures

机译:贫甲烷/空气混合物中与点火核产生的火焰发生涡旋相互作用的数值研究

获取原文
获取原文并翻译 | 示例
       

摘要

In this work, the outcomes of interactions of counter-rotating vortex pairs with developing ignition kernels are studied. The conditions are selected to represent those in a lean-burn natural-gas engine with hot-jet ignition. The evolution of flame surface area during kernel-vortex interaction is quantitatively and qualitatively examined. It is observed that flame development is accelerated and the net flame surface area growth rate, i.e. heat release rate, increased with increasing vortex velocity. In general, increasing the vortex length scale increases the surface growth rate, i.e. increases heat release rates, but for small length scales, i.e. when the ratio of vortex length scale to kernel diameter is small, high flame curvature induced during the interaction leads to flame weakening and slower growth rates. When the vortex velocity is high relative to the flame speed and the length scale is comparable to the kernel diameter, the vortex breaks through the ignition kernel carrying with it hot products of combustion. This accelerates growth of the flame surface area and heat release rates compared to a kernel with no vortex interaction. On decreasing the vortex velocity and increasing the length scale, the wrinkling of the kernel becomes important. This also results in increased surface growth rates and higher heat release rates.
机译:在这项工作中,研究了反向旋转涡流对与发展中的点火核相互作用的结果。选择条件以代表带有热喷射点火的稀薄燃烧天然气发动机中的条件。内核和涡流相互作用过程中火焰表面积的变化被定量和定性地检查。观察到,随着涡旋速度的增加,火焰的发展被加速并且火焰净表面积的增长速率,即放热速率增加。通常,增加涡流长度尺度会增加表面生长速率,即增加放热率,但是对于小长度尺度,即当涡流长度尺度与籽粒直径的比率较小时,在相互作用过程中引起的高火焰曲率会导致火焰减弱和放缓的速度。当涡旋速度相对于火焰速度较高且长度尺度与核直径相当时,涡旋会突破点火核,并伴随着燃烧的热产物。与没有涡旋相互作用的内核相比,这可以加快火焰表面积和热量释放速率的增长。在降低涡旋速度并增加长度尺度时,籽粒的皱纹变得很重要。这也导致增加的表面生长速率和更高的放热速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号