首页> 外文期刊>Combustion and Flame >Understanding ambient pressure effects on piloted ignition through numerical modeling
【24h】

Understanding ambient pressure effects on piloted ignition through numerical modeling

机译:通过数值模型了解环境压力对引燃的影响

获取原文
获取原文并翻译 | 示例
       

摘要

This work presents a numerical modeling investigation of the mechanisms controlling the dependence on ambient pressure of the piloted ignition of a solid fuel under external radiant heating. The focus is to confirm the hypotheses and phenomenological arguments generated by previous experimental studies of the problem. For this purpose, the effect of ambient pressure on the piloted ignition of thermally irradiated samples of PMMA is modeled using the Fire Dynamics Simulator (FDS5) code. Two-dimensional simulations were performed using finite-rate single-step combustion kinetics in the gas-phase and a single-step Arrhenius reaction rate for the solid phase decomposition. Oxidative pyrolysis is not considered and the in-depth formed pyrolyzate is assumed to flow unrestricted through the PMMA. The objective is to understand the thermo-physical mechanisms leading to ignition and how they may be affected by a reduction in ambient pressure. The model is able to reproduce the main physical aspects of the piloted ignition of a solid fuel and confirms previous phenomenological explanations developed to describe recent experimental results at a range of ambient pressures. Reduced pressure environments result in: (1) shorter ignition times mainly due to reduced convective heat losses from the heated material to the surroundings, allowing for the material to heat more rapidly and pyrolyze faster; (2) a lower fuel mass flux at ignition, due primarily to a thicker thermal boundary layer and a thicker fuel species profile. The appearance of a premixed flame at the pilot, its propagation through the combustible mixture above the solid surface, and the subsequent sustained burning conditions are also explored in this work. The calculated ignition times and mass loss rates at ignition are compared to those measured experimentally in a laboratory-scale combustion wind tunnel. It is shown that with appropriate kinetic parameters the model qualitatively agrees with the experimental data.
机译:这项工作提出了一个数值模型研究,研究了在外部辐射加热下控制固体燃料的引燃对环境压力的依赖性的机理。重点是确认以前对该问题进行的实验研究得出的假设和现象学论点。为此,使用Fire Dynamics Simulator(FDS5)代码对环境压力对PMMA热辐照样品的引燃点火的影响进行建模。使用气相中的有限速率单步燃烧动力学和固相分解的单步Arrhenius反应速率进行了二维模拟。不考虑氧化热解,并假定深度形成的热解产物不受限制地流过PMMA。目的是了解导致点火的热物理机制,以及它们如何受到环境压力降低的影响。该模型能够再现固体燃料引燃的主要物理方面,并证实了先前的现象学解释,用于描述在环境压力范围内的最新实验结果。降低的压力环境导致:(1)点火时间更短,这主要是由于从加热的材料到周围环境的对流热损失减少,从而使材料更快地加热和更快地热解; (2)点火时燃料质量通量较低,这主要归因于较厚的热边界层和较厚的燃料种类分布。在这项工作中还探讨了预混合火焰在引燃器处的出现,在固体表面上方通过可燃混合物的传播以及随后持续的燃烧条件。将计算出的点火时间和点火时的质量损失率与在实验室规模的燃烧风洞中通过实验测得的结果进行比较。结果表明,采用合适的动力学参数,该模型与实验数据在质量上吻合。

著录项

  • 来源
    《Combustion and Flame》 |2012年第12期|3544-3553|共10页
  • 作者单位

    Abengoa Research, c/Energia Solar 1, Palmas Altas, 41014 Sevilla, Spain;

    Department of Mechanical Engineering, University of California at Berkeley, 60A Hesse Hall, Mailstop 1740, Berkeley, CA 94720, USA;

    Department of Mechanical Engineering, University of California at Berkeley, 60A Hesse Hall, Mailstop 1740, Berkeley, CA 94720, USA;

    NASA John H. Glenn Research Center, Cleveland, OH 44256, USA;

    NASA John H. Glenn Research Center, Cleveland, OH 44256, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    piloted ignition; reduced pressure; ignition delay; critical mass flux; FDS;

    机译:先导点火减压;点火延迟临界质量通量;FDS;
  • 入库时间 2022-08-18 00:12:06

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号