首页> 外文期刊>Combustion and Flame >Computationally-efficient and scalable parallel implementation of chemistry in simulations of turbulent combustion
【24h】

Computationally-efficient and scalable parallel implementation of chemistry in simulations of turbulent combustion

机译:在湍流燃烧模拟中化学的计算有效且可扩展的并行实现

获取原文
获取原文并翻译 | 示例
       

摘要

Large scale combined Large-Eddy Simulation (LES)/Probability Density Function (PDF) parallel computations of reactive flows with detailed chemistry involving large numbers of species and reactions are computationally expensive. Among the various techniques used to reduce the computational cost of representing chemistry, the three approaches in widest use are: (1) mechanism reduction, (2) dimension reduction, and (3) tabulation. In addition to these approaches, in large scale parallel LES/PDF computations, we need strategies to distribute the chemistry workload among the participating cores to reduce the overall wall clock time of the computations. Here we present computationally-efficient strategies for implementing chemistry in parallel LES/PDF computations using in situ adaptive tabulation (ISAT) and x2f_mpi - a Fortran library for parallel vector-valued function evaluation (used with ISAT in this context). To test the strategies, we perform LES/PDF computations of the Sandia Flame D with chemistry represented using (a) a 16-species augmented reduced mechanism; and (b) a 38-species C_1-C_4 skeletal mechanism. We present three parallel strategies for redistributing the chemistry workload, namely (a) PLP, purely local processing; (b) URAN, the uniform random distribution of chemistry computations among all cores following an early stage of PLP; and (c) P-URAN, a Partitioned URAN strategy that redistributes the workload only among partitions or subsets of the cores. We show that among these three strategies, the P-URAN strategy (ⅰ) yields the lowest wall clock time, which is within a factor of 1.5 and 1.7 of estimates for the lowest theoretically achievable wall clock time for the 16-species and 38-species mechanisms, respectively; and (ⅱ) for reaction, achieves a relative weak scaling efficiency of about 85% when scaling from 2304 to 9216 cores and a relative strong scaling efficiency of over 60% when scaling from 1152 to 6144 cores.
机译:大规模组合大涡模拟(LES)/概率密度函数(PDF)并行计算反应性流以及涉及大量物种和反应的详细化学反应的计算量很大。在用于减少代表化学物质的计算成本的各种技术中,最广泛使用的三种方法是:(1)减少机理,(2)减少尺寸和(3)列表化。除了这些方法,在大规模并行LES / PDF计算中,我们需要策略来在参与的核之间分配化学工作量,以减少计算的总挂钟时间。在这里,我们介绍了使用原位自适应制表法(ISAT)和x2f_mpi(用于并行矢量值函数评估的Fortran库)在并行LES / PDF计算中实施化学反应的高效计算策略。为了测试该策略,我们使用以下化学物质对Sandia Flame D进行LES / PDF计算:(a)16种增强的还原机制; (b)38种C_1-C_4骨骼机制。我们提出了三种用于重新分配化学工作量的并行策略,即(a)PLP,纯局部处理; (b)URAN,在PLP的早期阶段之后,所有核之间化学计算的均匀随机分布; (c)P-URAN,一种分区的URAN策略,仅在核心的分区或子集之间重新分配工作负载。我们显示,在这三种策略中,P-URAN策略(ⅰ)产生了最低的挂钟时间,这是16种物种和38-种物种在理论上可实现的最低挂钟时间的估计值的1.5到1.7倍之内物种机制; (ⅱ)的反应,当从2304内核扩展到9216内核时,可获得约85%的相对弱缩放效率,而从1152内核扩展到6144内核时可获得超过60%的相对强缩放效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号