首页> 外文期刊>Combustion and Flame >A dynamic adaptive chemistry scheme with error control for combustion modeling with a large detailed mechanism
【24h】

A dynamic adaptive chemistry scheme with error control for combustion modeling with a large detailed mechanism

机译:具有误差机制的动态自适应化学方案用于大型模型燃烧建模

获取原文
获取原文并翻译 | 示例
       

摘要

A new error controlled dynamic adaptive chemistry (EC-DAC) scheme is developed and validated for ignition and combustion modeling with large, detailed, and comprehensively reduced n-heptane and n-decane mechanisms. A fuel oxidation progress variable is introduced to determine the local model reduction threshold by using the mass fraction of oxygen. An initial threshold database for error control is created according to the progress variable in a homogeneous ignition system using a detailed mechanism. The threshold database tabulated by the fuel oxidation progress variable is used to generate a dynamically reduced mechanism with a specified error bound by using the Path Flux Analysis (PFA) method. The method leads to an error-controlled kinetic model reduction according to the local mixture reactivity and improves the computation efficiency. Numerical simulations of the homogeneous ignition of n-heptane/air and n-decane/air mixtures at different initial conditions are conducted with one detailed and one comprehensively reduced mechanism involving 1034 and 121 species, respectively. The results show that the present algorithm of error-controlled adaptive chemistry scheme is accurate. The computation efficiency is improved by more than one-order for both mechanisms. Moreover, unsteady simulations of outwardly propagating spherical n-heptane/air premixed flames demonstrate that the method is rigorous even when transport is included. The successful validation in both ignition and unsteady flame propagation for both detailed and reduced mechanisms demonstrates that this method can be efficiently used in the direct numerical simulation of reactive flow for large kinetic mechanisms.
机译:开发了一种新的错误控制动态自适应化学(EC-DAC)方案,并已通过大型,详细和全面还原的正庚烷和正癸烷机理进行了点火和燃烧建模验证。通过使用氧气的质量分数,引入燃料氧化进程变量来确定局部模型还原阈值。使用详细的机制,根据均匀点火系统中的进度变量,创建用于错误控制的初始阈值数据库。由燃料氧化进程变量制成表格的阈值数据库用于通过使用路径通量分析(PFA)方法生成具有指定误差范围的动态降低的机制。该方法根据局部混合物反应性导致了误差控制的动力学模型的简化并提高了计算效率。对正庚烷/空气和正癸烷/空气混合物在不同初始条件下均质着火的数值模拟,采用一种详细的机理和一种综合的还原机理,分别涉及1034和121种。结果表明,该算法是正确的。两种机制的计算效率均提高了一个以上。此外,向外传播的球形正庚烷/空气预混火焰的不稳定模拟表明,即使包括运输方法,该方法也很严格。对于详细机理和简化机理在点火和不稳定火焰传播中的成功验证表明,该方法可有效地用于大型动力学机理的反应流的直接数值模拟。

著录项

  • 来源
    《Combustion and Flame》 |2013年第2期|225-231|共7页
  • 作者单位

    School of Power Engineering, Chongqing University, Chongqing 400044, China;

    SKLTCS, Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871, China;

    Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, Nf 08544, USA;

    Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, Nf 08544, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    dynamic adaptive chemistry; error control; progress variable; n-heptane; n-decane;

    机译:动态自适应化学错误控制;进度变量正庚烷;正癸烷;
  • 入库时间 2022-08-18 00:11:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号