首页> 外文期刊>Combustion and Flame >Pathways, kinetics and thermochemistry of methyl-ester peroxy radical decomposition in the low-temperature oxidation of methyl butanoate: A computational study of a biodiesel fuel surrogate
【24h】

Pathways, kinetics and thermochemistry of methyl-ester peroxy radical decomposition in the low-temperature oxidation of methyl butanoate: A computational study of a biodiesel fuel surrogate

机译:丁酸甲酯低温氧化过程中甲酯过氧自由基分解的途径,动力学和热化学:生物柴油燃料替代物的计算研究

获取原文
获取原文并翻译 | 示例
       

摘要

A chemical kinetic submechanism proposed here is an essential prerequisite to model autoignition of methyl esters at low temperature region (less than ~900 K), where reactions of methyl-ester peroxy radicals (ROO·) and hydroperoxy methyl-ester radicals (Q·OOH) are crucial and relatively unexplored. The potential energy surfaces of the methyl butanoate peroxy radicals + O_2 systems are computed by the G3MP2B3 composite approach. 114 pathways are identified leading to the formation of key radicals in the ignition kernel such as OH and HO_2. Particular attention is focused on: (1) intramolecular H-migration of ROO·, (2) unimolecular dissociations of ROO· and O·OOH and (3) reactions of ROO· + HO_2. Using the canonical transition state theory, the high-pressure limit rate constants for reactions in the kinetic submechanism are calculated. Standard enthalpy of formation, entropy and heat capacities are evaluated for intermediates and products formed during combustion by means of the standard statistical mechanics formulae. The agreement and disagreement between our calculated kinetic parameters and previous estimates offer further insight into the uncertainty associated with theoretical estimation. We perform the branching ratio analysis for the competing channels between the reverse dissociation of ROO· (ROO·→ R· + O_2) and explored unimolecular reactions decomposing ROO·. Additionally, we also quantify the similarity and dissimilarity between the rate constants determined here and those previously calculated for normal alkanes. Finally, the effect of transition state size on the rate constants for the isomerizations of methyl-ester peroxy radicals is systematically analyzed.
机译:本文提出的化学动力学亚机理是在低温区域(小于〜900 K)模拟甲基酯自燃的必要先决条件,其中甲基酯过氧自由基(ROO·)与氢过氧甲基酯自由基(Q·OOH)反应)是至关重要的且相对未开发。丁酸甲酯过氧自由基+ O_2系统的势能面通过G3MP2B3复合方法计算。鉴定出114条途径,这些途径导致在点火核中形成关键自由基,例如OH和HO_2。特别关注的是:(1)ROO·的分子内H迁移,(2)ROO·和O·OOH的单分子解离,以及(3)ROO·+ HO_2的反应。使用规范的过渡态理论,计算了动力学亚机理中反应的高压极限速率常数。通过标准统计力学公式,对燃烧过程中形成的中间体和产物评估了标准的生成焓,熵和热容。我们计算出的动力学参数与先前估计之间的一致性和分歧为与理论估计相关的不确定性提供了进一步的见解。我们对ROO·(ROO·→R·+ O_2)的反向解离之间的竞争通道进行支化比分析,并探索了分解ROO·的单分子反应。此外,我们还量化了此处确定的速率常数与先前为正构烷烃计算的速率常数之间的相似性和相异性。最后,系统地分析了过渡态尺寸对甲基酯过氧自由基异构化速率常数的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号