首页> 外文期刊>Combustion and Flame >A slice of an aluminum particle: Examining grains, strain and reactivity
【24h】

A slice of an aluminum particle: Examining grains, strain and reactivity

机译:一片铝颗粒:检查晶粒,应变和反应性

获取原文
获取原文并翻译 | 示例
           

摘要

Micron-scale aluminum (Al) particles are plagued by incomplete combustion that inhibits their reactivity. One approach to improving reactivity is to anneal Al particles to increase dilatational (volumetric) strain which has also been linked to increased combustion performance. While optimal annealing temperatures have been identified (roughly 300 degrees C), little is known about cooling rate effects on particle combustion performance. This study examines the effect of quenching after annealing Al microparticles to 100, 200 and 300 degrees C on intra-particle dilatational strain and reactivity. Synchrotron X-ray diffraction analysis of the particles reveals the cooling rates in the range from 0.007 to 0.38 K/s have little effect on the dilatational strain of the aluminum-core, alumina-shell particles. The annealed and quenched Al particles were then combined with a metal oxidizer (copper oxide) to examine reactivity. Flame propagation experiments follow the same trend: flame speeds are unchanged until a critical annealing temperature of 300 degrees C is reached and performance is maintained for each annealing temperature regardless of cooling rate. These results show that altering the mechanical properties and combustion performance of Al particles is strongly dependent on the annealing temperature and unchanged with variation in cooling rate. The contributions from elastic and plastic deformation mechanisms on strain are also considered and additional experimental results are shown on the microstructure of an Al particle. Focused ion beam milling of an Al particle to electron transparency was combined with transmission electron microscope imaging in order to examine the microstructure of the Al particles. This confirmed that the Al microparticles have a polycrystalline structure shown by grains all exceeding 100 nm in size. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:微米级的铝(Al)颗粒受到不完全燃烧的困扰,这种燃烧会抑制其反应性。改善反应性的一种方法是退火Al颗粒以增加膨胀(体积)应变,这也与提高燃烧性能有关。虽然已经确定了最佳退火温度(大约300摄氏度),但冷却速率对颗粒燃烧性能的影响知之甚少。这项研究检验了将Al微粒退火至100、200和300摄氏度后淬火对粒子内膨胀应变和反应性的影响。粒子的同步X射线衍射分析表明,冷却速度在0.007至0.38 K / s的范围内,对铝芯氧化铝壳粒子的膨胀应变几乎没有影响。然后将经过退火和淬火的Al颗粒与金属氧化剂(氧化铜)混合,以检查反应性。火焰传播实验遵循相同的趋势:火焰速度保持不变,直到达到300摄氏度的临界退火温度为止,并且无论冷却速率如何,每个退火温度下的性能都得以保持。这些结果表明,改变Al颗粒的机械性能和燃烧性能在很大程度上取决于退火温度,而与冷却速率的变化无关。还考虑了弹性和塑性变形机制对应变的贡献,并且在Al粒子的微观结构上显示了其他实验结果。将铝粒子的聚焦离子束铣削至电子透明性与透射电子显微镜成像相结合,以检查铝粒子的微观结构。这证实了Al微粒具有由尺寸均超过100nm的晶粒显示的多晶结构。 (C)2016年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号