...
首页> 外文期刊>Combustion and Flame >A general theory of ignition and combustion of nano- and micron-sized aluminum particles
【24h】

A general theory of ignition and combustion of nano- and micron-sized aluminum particles

机译:纳米和微米级铝颗粒着火和燃烧的一般理论

获取原文
获取原文并翻译 | 示例
           

摘要

A general theory of ignition and combustion of nano- and micron-sized aluminum particles is developed. The oxidation process is divided into several stages based on phase transformations and chemical reactions. Characteristic time scales of different processes are compared to identify physicochemical phenomena in each stage. In the first stage, the particle is heated to the melting temperature of the aluminum core. Key processes are heat and mass transfer between the gas and particle surface and diffusion of mass and energy inside the particle. The second stage begins upon melting of the aluminum core. Melting results in pressure buildup, thereby facilitating mass diffusion and/or cracking of the oxide layer. Melting is followed by polymorphic phase transformations, which also results in the formation of openings in the oxide layer. These provide pathways for the molten aluminum to react with the oxidizing gas; the ensuing energy release results in ignition of nano-aluminum particles. For large micron-sized particles, ignition is not achieved due to their greater volumetric heat capacity. In the third stage, nanoparticles undergo vigorous self-sustaining reactions with the oxidizing gas. Reactions typically occur heterogeneously in the particle and the burning rate is controlled by chemical kinetics. For large micron-sized particles, polymorphic phase transformations result in the formation of a crystalline oxide layer. The oxide layer melts and particle ignition is achieved. In the fourth stage, the large micron-sized particle burns through gas-phase or surface reactions, depending on the oxidizer and pressure. The burning rate is controlled by mass diffusion through the gas-phase mixture. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:建立了纳米和微米级铝颗粒着火和燃烧的一般理论。根据相变和化学反应,氧化过程分为几个阶段。比较不同过程的特征时间尺度,以识别每个阶段的物理化学现象。在第一阶段,将颗粒加热到铝芯的熔化温度。关键过程是气体与颗粒表面之间的热量和质量传递,以及颗粒内部质量和能量的扩散。第二阶段从铝芯熔化开始。熔化导致压力增大,从而促进氧化物层的质量扩散和/或破裂。熔融之后是多晶相转变,这也导致在氧化物层中形成开口。这些为熔融铝与氧化气体反应提供了途径。随后释放的能量导致纳米铝颗粒着火。对于大微米尺寸的颗粒,由于其更大的体积热容量而无法实现点火。在第三阶段,纳米粒子与氧化气体进行剧烈的自我维持反应。反应通常在颗粒中异质发生,并且燃烧速率由化学动力学控制。对于大微米尺寸的颗粒,多晶相转变导致形成结晶氧化物层。氧化物层熔化并实现了颗粒点火。在第四阶段,取决于氧化剂和压力,大的微米级颗粒通过气相或表面反应燃烧。燃烧速率通过在气相混合物中的质量扩散来控制。 (C)2016年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号