首页> 外文期刊>Combustion and Flame >Degree of Disequilibrium analysis for automatic selection of kinetic constraints in the Rate-Controlled Constrained-Equilibrium method
【24h】

Degree of Disequilibrium analysis for automatic selection of kinetic constraints in the Rate-Controlled Constrained-Equilibrium method

机译:速率控制约束平衡法中自动选择动力学约束的不平衡度分析

获取原文
获取原文并翻译 | 示例
       

摘要

The Rate-Controlled Constrained-Equilibrium (RCCE) model reduction scheme for chemical kinetics provides acceptable accuracies with a number of differential equations much lower than the number of species in the underlying Detailed Kinetic Model (DKM). To yield good approximations, however, the method requires accurate identification of the rate controlling constraints. So far, a drawback of the RCCE scheme has been the absence of a fully automatable and systematic procedure that is capable of identifying the best constraints for a given range of thermodynamic conditions and a required level of approximation. In this paper, we propose a new methodology for such identification based on a simple algebraic analysis of the results of a preliminary simulation of the underlying DKM, which is focused on the behaviour of the degrees of disequilibrium (DoD) of the individual chemical reactions. The new methodology is based on computing an Approximate Reduced Row Echelon Form of the Actual Degrees of Disequilibrium (ARREFADD) with respect to a preset tolerance level. An alternative variant is to select an Approximate Singular Value Decomposition of the Actual Degrees of Disequilibrium (ASVDADD). Either procedure identifies a low dimensional subspace in the DoD space, from which the actual DoD traces do not depart beyond a fixed distance related to the preset tolerance (ARREFADD methodology) or to the first neglected singular value of the matrix of DoD traces (ASVDADD methodology). The effectiveness and robustness of the method is demonstrated for the case of a very rapid supersonic nozzle expansion of the products of hydrogen and methane oxycombustion and for the case of methane/oxygen ignition. The results are in excellent agreement with DKM predictions. For both variants of the method, we provide a simple Matlab code implementing the proposed constraint selection algorithm. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:用于化学动力学的速率控制约束平衡(RCCE)模型简化方案提供了可接受的精度,其微分方程的数量远低于基本详细动力学模型(DKM)中的物种数量。然而,为了产生良好的近似值,该方法需要精确识别速率控制约束。到目前为止,RCCE方案的一个缺点是缺乏能够针对给定的热力学条件范围和所需的近似水平确定最佳约束的完全自动化和系统的程序。在本文中,我们基于对基础DKM的初步模拟结果的简单代数分析,提出了一种用于这种鉴定的新方法,该方法主要关注各个化学反应的不平衡度(DoD)的行为。新方法基于相对于预设公差水平的实际不平衡度(ARREFADD)的近似缩减行梯形形式。一种替代方案是选择实际不平衡度(ASVDADD)的近似奇异值分解。两种方法都可以确定DoD空间中的一个低维子空间,从该子空间中,实际DoD迹线不会偏离与预设公差(ARREFADD方法)或DoD迹线矩阵的第一个被忽略的奇异值(ASVDADD方法)相关的固定距离)。对于氢和甲烷氧燃烧产物的超音速喷嘴膨胀的情况以及甲烷/氧点火的情况,证明了该方法的有效性和鲁棒性。结果与DKM预测非常吻合。对于该方法的两个变体,我们都提供了一个简单的Matlab代码,可实现所提出的约束选择算法。 (C)2016年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号