首页> 外文期刊>Combustion and Flame >Experimental and kinetic modeling investigation on decalin pyrolysis at low to atmospheric pressures
【24h】

Experimental and kinetic modeling investigation on decalin pyrolysis at low to atmospheric pressures

机译:萘烷在低至大气压下热解的实验和动力学模型研究

获取原文
获取原文并翻译 | 示例
           

摘要

The pyrolysis of decalin was studied in a flow reactor using synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) at the pressures of 4, 20, and 101 kPa and the temperatures from 920 to 1500 K. Dozens of pyrolysis species were identified and their mole fraction profiles were measured as a function of temperature, particularly several free radicals and aromatic species. Besides, a detailed kinetic model consisting of 484 species and 1774 reactions was proposed and used to simulate the present experimental data. The rate of production analysis and sensitivity analysis was performed in order to provide deep insight into the pyrolysis kinetics of decalin. The decomposition of decalin is initiated by the C-C bond dissociation reactions of both decalin and its C10H18 isomers, while the H-atom abstraction reactions consume most of decalin. Monocyclic aromatic hydrocarbons (MAHs) are mainly produced in the fuel decomposition process instead of the mass growth process from small molecules, indicating that the two fused six-membered ring structure offers a solid infrastructure to form MAHs. Polycyclic aromatic hydrocarbons (PAHs) are mainly produced in the mass growth process from PAH precursors such as benzyl radical (A1CH(2)), phenyl radical (A1-), and 1,3-cyclopentadienyl radical (CYC5H5). The relatively high degree of saturation of decalin facilitates ring-opening pathways in its decomposition. This enhances the formation of MAHs but limits the formation of PAHs, leading to the lower sooting tendency of decalin than tetralin. Furthermore, the model was also validated on the shock tube pyrolysis data of decalin in the literature. (C) 2016 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:使用同步加速器真空紫外光电离质谱法(SVUV-PIMS)在流动反应器中研究了十氢化萘的热解,压力分别为4、20和101 kPa,温度为920至1500K。测量摩尔分数分布随温度的变化,特别是几种自由基和芳香族物质的变化。此外,提出了一个由484个物种和1774个反应组成的详细动力学模型,并用来模拟目前的实验数据。进行了产率分析和敏感性分析,以深入了解十氢化萘的热解动力学。十氢化萘及其C10H18异构体的C-C键解离反应可引发十氢化萘的分解,而H原子提取反应会消耗大部分的十氢化萘。单环芳烃(MAHs)主要在燃料分解过程中产生,而不是从小分子的质量增长过程中产生,这表明两个稠合的六元环结构为形成MAHs提供了坚实的基础设施。多环芳烃(PAHs)主要是在质量增长过程中由PAH前体生成,例如苄基(A1CH(2)),苯基(A1-)和1,3-环戊二烯基(CYC5H5)。十氢化萘的相对较高的饱和度有助于其分解中的开环途径。这增强了MAH的形成,但限制了PAH的形成,导致十氢化萘的烟灰趋势低于四氢化萘。此外,该模型也已在十氢化萘的激波管热解数据上得到了验证。 (C)2016年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

  • 来源
    《Combustion and Flame》 |2016年第5期|228-237|共10页
  • 作者单位

    Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China;

    Shanghai Jiao Tong Univ, MOE, Key Lab Power Machinery & Engn, Shanghai 200240, Peoples R China;

    Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China;

    Shanghai Jiao Tong Univ, MOE, Key Lab Power Machinery & Engn, Shanghai 200240, Peoples R China;

    Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China;

    Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China;

    Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China|Shanghai Jiao Tong Univ, MOE, Key Lab Power Machinery & Engn, Shanghai 200240, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Decalin; Flow reactor pyrolysis; SVUV-PIMS; Kinetic model; Aromatics formation;

    机译:萘烷;流式反应器热解;SVUV-PIMS;动力学模型;芳烃形成;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号