首页> 外文期刊>Combustion and Flame >A flame particle tracking analysis of turbulence-chemistry interaction in hydrogen-air premixed flames
【24h】

A flame particle tracking analysis of turbulence-chemistry interaction in hydrogen-air premixed flames

机译:氢-空气预混火焰中湍流-化学相互作用的火焰粒子跟踪分析

获取原文
获取原文并翻译 | 示例
           

摘要

Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen-air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen-air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (S-d) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in S-d is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description. (C) 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:湍流,分子输运和能量输运的相互作用,再加上化学作用,在强烈湍流的预混火焰的火焰表面几何形状,传播,an灭和局部熄灭/重燃特性的演变中起着至关重要的作用。这项研究试图了解这些相互作用如何影响贫氢空气预混湍流火焰的火焰表面an灭。直接数值模拟(DNS)在不同的参数条件下进行,具有详细的反应机理和氢-空气火焰的传输特性。火焰粒子跟踪(FPT)技术用于跟踪特定的火焰表面片段。考虑温度等值面的局部位移火焰速度(S-d)的解析表达式,并确定了在不同湍流-火焰相互作用条件下,输运,化学和运动学对位移火焰速度的贡献。通常,在所有考虑的条件下,发现火焰粒子的位移火焰速度都随时间增加。这是因为,最终所有的火焰表面及其驻留的火焰粒子都会在湍流引起的拉伸和折叠过程结束时通过反应物岛的形成而接近approach灭。使用FPT获得的主曲率随时间变化的统计数据表明,这些岛平均是椭圆形,包围着新鲜的反应物。进一步的检查表明,S-d的增加是由于火焰表面负曲率的增加以及温度梯度的最终均一性所致,因为这些反应物岛由于火焰传播和湍流混合而收缩。最后,发现归一化的,平均的位移火焰速度与拉伸卡尔洛维兹数的演变在狭窄的谱带上崩溃,这表明在拉格朗日描述中可能有统一的描述火焰速度与拉伸速度的关系。 (C)2015年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号