首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Interaction of Flame Flashback Mechanisms in Premixed Hydrogen-Air Swirl Flames
【24h】

Interaction of Flame Flashback Mechanisms in Premixed Hydrogen-Air Swirl Flames

机译:预混合氢-空气旋流火焰中火焰反冲机理的相互作用

获取原文
获取原文并翻译 | 示例
           

摘要

An experimental study is presented on the interaction of flashback originating from flame propagation in the boundary layer (1), from combustion driven vortex breakdown (2) and from low bulk flow velocity (3). In the investigations, an aerodynamically stabilized swirl burner operated with hydrogen-air mixtures at ambient pressure and with air preheat was employed, which previously had been optimized regarding its aerodynamics and its flashback limit. The focus of the present paper is the detailed characterization of the observed flashback phenomena with simultaneous high speed (HS) particle image velocimetry (PIV)/Mie imaging, delivering the velocity field and the propagation of the flame front in the mid plane, in combination with Iine-of-sight integrated OH~*-chemiluminescence detection revealing the flame envelope and with ionization probes which provide quantitative information on the flame motion near the mixing tube wall during flashback. The results are used to improve the operational safety of the system beyond the previously reached limits. This is achieved by tailoring the radial velocity and fuel profiles near the burner exit. With these measures, the resistance against flashback in the center as well as in the near wall region is becoming high enough to make turbulent flame propagation the prevailing flashback mechanism. Even at stoichiometric and preheated conditions this allows safe operation of the burner down to very low velocities of approximately 1/3 of the typical flow velocities in gas turbine burners. In that range, the high turbulent burning velocity of hydrogen approaches the low bulk flow speed and, finally, the flame begins to propagate upstream once turbulent flame propagation becomes faster than the annular core flow. This leads to the conclusions that finally the ultimate limit for the flashback safety was reached with a configuration, which has a swirl number of approximately 0.45 and delivers NO_x emissions near the theoretical limit for infinite mixing quality, and that high fuel reactivity does not necessarily rule out large burners with aerodynamic flame stabilization by swirling flows.
机译:进行了一项实验研究,涉及由边界层(1)中的火焰传播,燃烧引起的涡旋破裂(2)和低整体流速(3)引起的闪回的相互作用。在研究中,采用了一种空气动力学稳定的旋流燃烧器,该燃烧器在环境压力和氢气预热下运行,并在空气动力学和反闪极限方面进行了优化。本文的重点是在同时进行高速(HS)粒子图像测速(PIV)/ Mie成像时观察到的回火现象的详细表征,结合速度场和火焰锋在中平面的传播带有Iine-of-Insight集成OH〜*化学发光检测功能,可发现火焰包膜,并带有电离探针,可提供有关闪回过程中混合管壁附近火焰运动的定量信息。结果可用于提高系统的操作安全性,使其超出先前达到的极限。这可以通过调整燃烧器出口附近的径向速度和燃料分布来实现。通过这些措施,在中心以及在近壁区域中对回火的抵抗力变得足够高,以使湍流火焰传播成为主要的回火机制。即使在化学计量和预热条件下,这也可以使燃烧器安全运行至非常低的速度,大约是燃气轮机燃烧器典型流速的1/3。在该范围内,氢气的高湍流燃烧速度接近低整体流速,最后,一旦湍流火焰的传播速度快于环形芯流,火焰就开始向上游传播。由此得出的结论是,最终通过一种配置达到了闪回安全性的最终极限,该配置的旋流数约为0.45,并且NO_x排放接近无限混合质量的理论极限,并且高燃料反应性不一定通过旋流去除具有气动火焰稳定作用的大型燃烧器。

著录项

  • 来源
    《Journal of Engineering for Gas Turbines and Power》 |2016年第1期|011503.1-011503.12|共12页
  • 作者单位

    Lehrstuhl fuer Thermodynamik, Technische Universitaet Muenchen, Garching 85748, Germany;

    Lehrstuhl fuer Thermodynamik, Technische Universitaet Muenchen, Garching 85748, Germany;

    Lehrstuhl fuer Thermodynamik, Technische Universitaet Muenchen, Garching 85748, Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号