首页> 外文期刊>Combustion and Flame >Numerical prediction of combustion instability limit cycle oscillations for a combustor with a long flame
【24h】

Numerical prediction of combustion instability limit cycle oscillations for a combustor with a long flame

机译:长火焰燃烧器燃烧不稳定性极限循环振荡的数值预测

获取原文
获取原文并翻译 | 示例
       

摘要

A coupled numerical approach is investigated for predicting combustion instability limit cycle characteristics when the combustor contains a long flame. The test case is the ORACLES combustor, with a turbulent premixed flame a metre long: it exhibits limit cycle oscillations at similar to 50 Hz and normalised velocity amplitude ahead of the flame of similar to 0.29. The approach obtains the flame response to acoustic excitation using Large Eddy Simulations (LES), and couples this with a low-order wave-based network representation for the acoustic waves within the combustor. The flame cannot be treated as acoustically compact; the spatial distribution of both its response and the subsequent effect on the acoustics must be accounted for. The long flame is uniformly segmented axially, each segment being much shorter than the flow wavelengths at play. A series of "local" flame describing functions, one for the heat release rate response within each segment to velocity forcing at a fixed reference location, are extracted from the LES. These use the Computational Fluid Dynamics toolbox, OpenFOAM, with an incompressible approximation for the flow-field and combustion modelled using the Partially Stirred Reactor model with a global one-step reaction mechanism. For coupling with the low-order acoustic network modelling, compact acoustic jump conditions are derived and applied across each flame segment, while between flame segments, wave propagation occurs. Limit cycle predictions from the proposed coupled method agree well with those predicted using the continuous 1-D linearised Euler equations, validating the flame segmentation implementation. Limit cycle predictions (frequency 51.6 Hz and amplitude 0.38) also agree well with experimental measurements, validating the low-order coupled method as a prediction tool for combustors with long flames. A sensitivity analysis shows that the predicted limit cycle amplitude decreases rapidly when acoustic losses at boundaries are accounted for, and increases if combustor heat losses downstream of the flame are accounted for. This motivates more accurate determination of combustor boundary and temperature behaviour for thermoacoustic predictions. (C) 2017 The Authors. Published by Elsevier Inc.
机译:研究了一种耦合数值方法,用于预测燃烧器包含长火焰时的燃烧不稳定性极限循环特性。测试用例是ORACLES燃烧器,它具有一米长的湍流预混火焰:它在类似于50 Hz的频率下显示出极限循环振荡,在火焰之前的归一化速度幅值为0.29。该方法使用大涡模拟(LES)获得对声激发的火焰响应,并将其与燃烧器内声波的基于低阶波的网络表示形式耦合。火焰不能被视为声音紧凑;必须考虑其响应以及随后对声学的影响的空间分布。长火焰在轴向上均匀地分段,每个分段都比正在运行的流动波长短得多。从LES中提取了一系列“局部”火焰描述函数,其中一个函数用于每个段内的热量释放速率对固定参考位置处的速度强迫的响应。它们使用计算流体动力学工具箱OpenFOAM,它具有不可压缩的近似流场和燃烧,并使用带有整体一步反应机制的部分搅拌反应堆模型进行了建模。为了与低阶声学网络建模相结合,导出了紧凑的声学跳跃条件,并将其应用于每个火焰段,而在火焰段之间会发生波传播。所提出的耦合方法的极限循环预测与使用连续一维线性化的欧拉方程预测的极限循环非常吻合,从而验证了火焰分段的实现。极限循环的预测(频率51.6 Hz和振幅0.38)也与实验测量结果非常吻合,验证了低阶耦合方法是长火焰燃烧器的预测工具。敏感性分析表明,当考虑边界处的声损耗时,预测的极限循环幅度会迅速减小,而如果考虑到火焰下游的燃烧室热损耗,则预测的极限循环幅度会迅速增加。这促使更准确地确定燃烧器边界和温度行为,以进行热声预测。 (C)2017作者。由Elsevier Inc.发布

著录项

  • 来源
    《Combustion and Flame》 |2017年第11期|28-43|共16页
  • 作者单位

    Imperial Coll London, Dept Mech Engn, South Kensington Campus, London SW7 2AZ, England|Beihang Univ, Sch Astronaut, Beijing 100191, Peoples R China;

    Imperial Coll London, Dept Mech Engn, South Kensington Campus, London SW7 2AZ, England;

    Imperial Coll London, Dept Mech Engn, South Kensington Campus, London SW7 2AZ, England;

    Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, 29 Yudao St, Nanjing 210016, Jiangsu, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Combustion instability; Long flame; Segmented flame; Local flame describing function; Large eddy simulations; Low-order network model;

    机译:燃烧不稳定性长火焰分段火焰局部火焰描述功能​​大涡模拟低阶网络模型;
  • 入库时间 2022-08-18 00:10:19

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号