首页> 外文期刊>Combustion and Flame >Reaction mechanism, rate constants, and product yields for unimolecular and H-assisted decomposition of 2,4-cyclopentadienone and oxidation of cyclopentadienyl with atomic oxygen
【24h】

Reaction mechanism, rate constants, and product yields for unimolecular and H-assisted decomposition of 2,4-cyclopentadienone and oxidation of cyclopentadienyl with atomic oxygen

机译:2,4-环戊二烯酮的单分子和H辅助分解以及原子氧氧化环戊二烯基的反应机理,速率常数和产物产率

获取原文
获取原文并翻译 | 示例
           

摘要

Ab initio calculations of potential energy surfaces in conjunction with the RRKM-Master Equation theoretical approach have been employed to evaluate temperature- and pressure-dependent total and product specific rate constants and product branching ratios for unimolecular thermal decomposition of 2,4-cyclopentadienone C5H4O and for the C5H4O+H and C5H5+O reactions. The formation of the cyclobutadiene+CO products via a ring contraction/CO elimination mechanism is shown to be the prevailing channel for the unimolecular decomposition of C5H4O. The unimolecular reaction is found to be relatively slow, but decomposition of cyclopentadienone can be greatly facilitated through bimolecular encounters with H atoms. The C5H4O+H reaction is predicted to be fast, with rate constants ranging from 4.6 x 10(-12) to 1.8 x 10(-1) cm(3) molecule(-1) s(-1) at T = 500-2500 K and finite pressures. Cyclic C5H5O intermediates formed after the initial H addition undergo ring openings by beta-scissions and then decompose the major and the minor reaction products. The calculations predict that thermal decomposition of the ortho and meta C5H5O radicals as well as pyranyl nearly exclusively forms the C4H5+CO products, whereas decomposition of hydroxycyclopentadienyl C5H4OH predominantly produces cyclopentadienone+H. The C5H5+O reaction is shown to proceed by barrierless oxygen addition to the ring followed by fast H migration, ring opening, and dissociation to C4H5+CO. The C5H5+O rate constant is calculated to be close to 1 x 10(-10) cm(3) molecule(-1) s(-1) and to be pressure-independent and nearly independent of temperature. Modified Arrhenius expressions for rate constants for all considered reactions at the high-pressure limit and at finite pressures are generated for kinetic modeling. (C) 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:结合RRKM-Master方程理论方法,对势能面进行了从头算计算,以评估温度和压力相关的总和产物比速率常数以及2,4-环戊二烯酮C5H4O和2,4-环戊二烯酮的单分子热分解的产物支化比。用于C5H4O + H和C5H5 + O反应。通过环收缩/ CO消除机理形成的环丁二烯+ CO产物显示为C 5 H 4 O单分子分解的主要通道。发现单分子反应相对较慢,但是通过与H原子的双分子相遇,可以大大促进环戊二烯酮的分解。预计C5H4O + H反应会很快,速率常数范围为4.6 x 10(-12)至1.8 x 10(-1)cm(3)分子(-1)s(-1),T = 500- 2500 K和有限压力。最初的H加成后形成的环状C5H5O中间体会因β断裂而开环,然后分解主要和次要反应产物。该计算预测邻位和间位C 5 H 5 O基团和吡喃基的热分解几乎完全形成C 4 H 5 + CO产物,而羟基环戊二烯基C 5 H 4 OH的分解主要产生环戊二烯酮+ H。 C5H5 + O反应显示为通过向环中无阻添加氧,然后快速进行H迁移,开环和离解为C4H5 + CO来进行。计算得出C5H5 + O速率常数接近1 x 10(-10)cm(3)分子(-1)s(-1),并且与压力无关,并且几乎与温度无关。对于动力学模型,生成了在高压极限和有限压力下所有考虑的反应的速率常数的经修改的Arrhenius表达式。 (C)2017燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号