首页> 外文期刊>Combustion and Flame >Convection-driven melting in an n-octane pool fire bounded by an ice wall
【24h】

Convection-driven melting in an n-octane pool fire bounded by an ice wall

机译:对流驱动的融化在以冰壁为边界的正辛烷池火中

获取原文
获取原文并翻译 | 示例
           

摘要

An experimental study on an n-octane pool fire bound on one side by an ice wall was carried out to investigate the effects on ice melting by convection within the liquid part of the fuel. Experiments were conducted in a square glass tray (9.6 cm x 9.6 cm x 5 cm) with a 3 cm thick ice wall (9.6 cm x 6.5 cm x 3 cm) placed on one side of the tray. The melting front velocity, as an indicator of the melting rate of the ice, increased from 0.04 cm/min to 1 cm/min. The measurement of the burning rates and flame heights showed two distinctive behaviors; an induction period from the initial self-sustained flame to the peak mass loss rate followed by a steady phase from the peak of mass loss rate until the manual extinguishment. Similarly, the flow field measurements by a 2-dimensional PIV system indicated the existence of two different flow regimes. In the moments before ignition of the fuel, coupling of surface tension and buoyancy forces led to a combined one roll structure in the fuel. After ignition the flow field began transitioning toward an unstable flow regime (separated) with an increase in number of vortices around the ice wall. The separated regime started with presence of a multi-roll structure separating from a primary horizontal flow on the top driven by Marangoni convection. As the burning rate/flame height increased the velocity and evolving flow patterns enhanced the melting rate of the ice wall. Experimentally determined temperature contours, using an array of finely spaced thermocouples in the liquid fuel, were used to further investigate the two layer temperature structure; an upper layer (similar to 8 mm thick) with steep temperature gradient in the vertical direction and a layer of low temperature in deeper regions. A hot zone with thickness of 3 mm was present below the free surface corresponding to the multi-roll location. The multi-roll structure could be the main reason for the transport of the heat received from the flame toward the ice wall which causes the melting. (C) 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:进行了一个实验研究,该实验研究了在正冰壁一侧被冰壁束缚的情况,以研究燃料液体部分内对流对冰融化的影响。实验是在方形玻璃托盘(9.6 cm x 9.6 cm x 5 cm)中进行的,将3 cm厚的冰壁(9.6 cm x 6.5 cm x 3 cm)放在托盘的一侧。作为冰融化速度指标的融化前沿速度从0.04 cm / min增加到1 cm / min。燃烧速率和火焰高度的测量显示出两种不同的行为。从最初的自持火焰到质量损失率的峰值的诱导期,然后是从质量损失率的峰值直至手动熄灭的稳定阶段。同样,二维PIV系统的流场测量表明存在两种不同的流态。在燃料着火之前的瞬间,表面张力和浮力的耦合导致了燃料中组合的一个滚动结构。点火后,流场开始向不稳定的流态过渡(分离),冰壁周围的涡流数量增加。分离状态始于多辊结构的存在,该结构与由Marangoni对流驱动的顶部的主要水平流分离。随着燃烧速率/火焰高度的增加,速度和不断演变的流型增强了冰壁的融化速率。实验确定的温度等高线,使用在液体燃料中的一组细间距的热电偶,用于进一步研究两层温度结构。上层(大约8毫米厚)在垂直方向上具有陡峭的温度梯度,在较深的区域中具有低温层。对应于多辊位置的自由表面下方存在厚度为3毫米的热区。多辊结构可能是从火焰接收的热量向冰壁传输而导致融化的主要原因。 (C)2017燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号