首页> 外文期刊>Combustion and Flame >Cool diffusion flames of butane isomers activated by ozone in the counterflow
【24h】

Cool diffusion flames of butane isomers activated by ozone in the counterflow

机译:逆流中被臭氧活化的丁烷异构体的冷扩散火焰

获取原文
获取原文并翻译 | 示例
       

摘要

Ignition in low temperature combustion engines is governed by a coupling between low-temperature oxidation kinetics and diffusive transport. Therefore, a detailed understanding of the coupled effects of heat release, low-temperature oxidation chemistry, and molecular transport in cool flames is imperative to the advancement of new combustion concepts. This study provides an understanding of the low temperature cool flame behavior of butane isomers in the counterflow configuration through the addition of ozone. The initiation and extinction limits of butane isomers' cool flames have been investigated under a variety of strain rates. Results revealed that, with ozone addition, establishment of butane cool diffusion flames was successful at low and moderate strain rates. iso-Butane has lower reactivity than n-butane, as shown by higher fuel mole fractions needed for cool flame initiation and lower extinction strain rate limits. Ozone addition showed a significant influence on the initiation and sustenance of cool diffusion flames; as ozone-less cool diffusion flame of butane isomers could not be established even at high fuel mole fractions. The structure of a stable n-butane cool diffusion flame was qualitatively examined using a time of flight mass spectrometer. Numerical simulations were performed using a detailed chemical kinetic model and molecular transport to simulate the extinction limits of the cool diffusion flames of the tested fuels. The model qualitatively captured experimental trends for both fuels and ozone levels, but over-predicted extinction limits of the flames. Reactions involving low-temperature species predominantly govern extinction limits of cool flames. The simulations were used to understand the effects of methyl branching on the behavior of n-butane and iso-butane cool diffusion flames. (C) 2018 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:低温内燃机的点火是由低温氧化动力学和扩散传输之间的耦合决定的。因此,对于新的燃烧概念的发展,必须详细了解热释放,低温氧化化学和分子在冷火焰中的耦合作用。这项研究通过添加臭氧了解了丁烷异构体在逆流构型下的低温冷火焰行为。在各种应变速率下,已经研究了丁烷异构体的冷火焰的引发和消光极限。结果表明,添加臭氧后,在低和中等应变速率下成功建立了丁烷冷扩散火焰。异丁烷的反应性低于正丁烷,这表现为冷火焰引发所需的较高燃料摩尔分数和较低的消光应变速率极限。臭氧的添加对冷扩散火焰的产生和维持有重大影响。因为即使在高燃料摩尔分数下也无法建立丁烷异构体的无臭氧冷扩散火焰。使用飞行时间质谱仪定性地研究了稳定的正丁烷冷扩散火焰的结构。使用详细的化学动力学模型和分子传输进行了数值模拟,以模拟测试燃料的冷扩散火焰的熄灭极限。该模型定性地捕获了燃料和臭氧水平的实验趋势,但是高估了火焰的熄灭极限。涉及低温物质的反应主要决定着冷火焰的消光极限。该模拟用于了解甲基支化对正丁烷和异丁烷冷扩散火焰行为的影响。 (C)2018年燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号