...
首页> 外文期刊>Combustion and Flame >Uncertainty quantification and sensitivity analysis of thermoacoustic stability with non-intrusive polynomial chaos expansion
【24h】

Uncertainty quantification and sensitivity analysis of thermoacoustic stability with non-intrusive polynomial chaos expansion

机译:具有非侵入式多项式混沌展开的热声稳定性的不确定度定量和敏感性分析

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, non-intrusive polynomial chaos expansion (NIPCE) is used for forward uncertainty quantification and sensitivity analysis of thermoacoustic stability of two premixed flame configurations. The first configuration is a turbulent swirl combustor, modeled by the Helmholtz equation with an n - tau flame model. Uncertain input parameters are the gain and the time delay of the flame, as well as the magnitude and the phase of the outlet reflection coefficient. NIPCE is successfully validated against Monte Carlo simulation. It is observed that the first order expansion suffices to yield accurate results. The second configuration under investigation is a low order network model of a laminar slit burner, with the flame transfer function identified from weakly compressible CFD simulations of laminar reacting flow. Firstly the uncertainty and sensitivity of the growth rate due to three uncertain input parameters of the CFD model - i.e., flow velocity, burner plate temperature and equivalence ratio - are analyzed. A Monte Carlo simulation is no longer possible due to the computational cost of the CFD simulations. Secondly, two additional uncertain parameters are taken into account, i.e., the respective magnitudes of inlet and outlet reflection coefficients. This extension of the analysis does not entail a considerable increase in computational cost, since the additional parameters are included only in the low order network model. In both cases, the second order expansion is sufficient to model the uncertainties in growth rate. (C) 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:在本文中,非侵入式多项式混沌扩展(NIPCE)用于前向不确定性量化和两种预混火焰构型的热声稳定性敏感性分析。第一种配置是湍流涡流燃烧器,由Helmholtz方程使用n-tau火焰模型建模。不确定的输入参数是火焰的增益和时间延迟,以及出口反射系数的大小和相位。 NIPCE已针对Monte Carlo模拟成功进行了验证。可以看出,一阶展开足以产生准确的结果。正在研究的第二种配置是层流狭缝燃烧器的低阶网络模型,其火焰传递函数从层流反应流的弱压缩CFD模拟中识别。首先分析了由于CFD模型的三个不确定输入参数(即流速,燃烧器板温度和当量比)导致的增长率的不确定性和敏感性。由于CFD模拟的计算成本,不再可能进行Monte Carlo模拟。其次,考虑了两个附加的不确定参数,即,入口和出口反射系数的各自大小。由于附加参数仅包含在低阶网络模型中,因此分析的这种扩展不会导致计算成本的显着增加。在两种情况下,二阶展开足以模拟增长率的不确定性。 (C)2017燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号