...
首页> 外文期刊>Combustion and Flame >Model form uncertainty quantification in turbulent combustion simulations: Peer models
【24h】

Model form uncertainty quantification in turbulent combustion simulations: Peer models

机译:湍流燃烧模拟中的模型形式不确定性量化:对等模型

获取原文
获取原文并翻译 | 示例
           

摘要

Turbulent combustion simulations invoke a number of component models for chemical kinetics, turbulence, flame structure, etc., each of which has an error associated with its structural form and contributes to overall uncertainties in simulation results. These model form errors arise from the necessity of making assumptions in deriving a model. Conventional approaches to estimating model form errors rely on an ad hoc additive error that is then calibrated against experimental or computational data. These approaches inherently neglect any a priori knowledge of physics in developing the model error estimate. Instead, in this work, an inherently physics-based approach to estimating model form error is developed based on the notion of "peer" models. In the generic approach, the error in a candidate model is determined by taking the difference between it and an equally plausible alternative "peer" model with a different set of assumptions. The generic approach is applied in this work to the modeling of the subfilter mixture fraction dissipation rate, which is typically modeled as the ratio of the subfilter mixture fraction variance and a time scale. The typical time scale approximation invokes a turbulent time scale, and a "peer" model is proposed in which a chemical time scale is invoked to estimate the model form error. Using stochastic collocation, the subfilter mixture fraction dissipation rate model form error as well as the uncertainty in a model parameter are propagated through LES calculations of the Sandia D Flame utilizing the steady flamelet model. The results indicate that the mixture fraction, temperature, and carbon monoxide uncertainties increase with downstream distance due to an increase in the relative subfilter mixture fraction variance and increased sensitivity to the time scale approximations, which diverge in magnitude with downstream distance. Uncertainties in these quantities arising from the model form error are shown to be more significant than uncertainties arising from the model constant uncertainty. For the temperature, uncertainties due to chemical kinetic rate uncertainty are shown to be slightly smaller than uncertainties due to the subfilter mixture fraction dissipation rate model error; for the carbon monoxide mass fraction, uncertainties due to chemical kinetic rate uncertainty are twice as large as uncertainties due to the sub filter mixture fraction dissipation rate error since carbon monoxide is more kinetically-controlled than the temperature. (C) 2017 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:湍流燃烧模拟调用了许多化学动力学,湍流,火焰结构等组成模型,每个模型都具有与其结构形式相关的误差,并导致模拟结果的总体不确定性。这些模型形式错误是由于在推导模型中进行假设的必要性而产生的。估计模型形式误差的常规方法依赖于特定的附加误差,然后根据实验或计算数据对其进行校准。这些方法在开发模型误差估计时会固有地忽略任何物理先验知识。相反,在这项工作中,基于“对等”模型的概念,开发了一种固有的基于物理的方法来估计模型形式误差。在通用方法中,候选模型中的错误是通过将其与具有不同假设集的同等合理的替代“对等”模型之间的差异确定的。在这项工作中,将通用方法应用于子过滤器混合物分数耗散率的建模,通常将其建模为子过滤器混合物分数变化与时间尺度的比率。典型的时间尺度近似调用了湍流时间尺度,并提出了“对等”模型,其中调用了化学时间尺度来估计模型形式误差。使用随机配置,通过使用稳定小火焰模型对Sandia D Flame进行LES计算,可传播子过滤器混合分数耗散率模型形式误差以及模型参数中的不确定性。结果表明,由于相对子过滤器混合物分数方差的增加和对时间尺度近似值的敏感性增加,混合物分数,温度和一氧化碳的不确定性随下游距离而增加,其大小随下游距离而发散。结果表明,由模型形式误差引起的这些数量的不确定性比由模型常数不确定性引起的不确定性要重要得多。对于温度,化学动力学速率不确定性引起的不确定性要略小于子过滤器混合物分数耗散速率模型误差引起的不确定性。对于一氧化碳质量分数,由于一氧化碳比温度受动力学控制的多,因此由化学动力学速率不确定性引起的不确定性是由于副过滤器混合物组分耗散率误差引起的不确定性的两倍。 (C)2017燃烧研究所。由Elsevier Inc.出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号