首页> 外文期刊>Combustion and Flame >Regulating magnesium combustion using surface chemistry and heating rate
【24h】

Regulating magnesium combustion using surface chemistry and heating rate

机译:使用表面化学和加热速率调节镁燃烧

获取原文
获取原文并翻译 | 示例
       

摘要

The magnesium (Mg) particle surface can be used to regulate fluorination or oxidation reactions depending on the applied heating rate and Mg particle size. Magnesium particles are surrounded by a complex hydroxide shell composed of an inner layer of magnesium oxide (MgO) and outer layer of magnesium hydroxide (Mg(OH)(2)). As particles approach the nanoscale, the thick oxide shell (e.g., 22 nm) becomes an appreciable portion of the overall powder and can be exploited to regulate reactivity. In this study, the reactivity of 800 nm Mg particles (nMg) was compared to 44 mu m Mg particles (mu Mg) when combined with Perfluoropolyethyer (PFPE), providing both fluorine and oxygen for Mg reactions. Experiments were performed at slow heating rates (10 degrees C/min) and separate experiments were performed at fast heating rates (6.0 x 10(5) degrees C/min). The slow heating rate studies used a differential scanning calorimeter (DSC) and thermogravimetric (TG) analyzer to examine reaction kinetics. The faster heating rate experiments used a hot wire to ignite a thermal run-away reaction. Powder X-ray diffraction (XRD) analysis of recovered residue at various temperatures corresponding to exothermic events in the DSC revealed reaction pathways for nMg + PFPE favoring oxidation reactions. For nMg powders, the outer Mg(OH)(2) surface layer dehydrates at low temperatures (313 degrees C) creating highly reactive sites for surface oxidation reactions in the condensed phase leading to a higher conversion of Mg(OH)(2) to MgO and greater consumption of Mg through oxidation reactions. For mu Mg, higher Mg(OH)(2) dehydration temperatures (498 degrees C) stabilize mu Mg particles and the bulk of reactions occur at elevated temperatures and in the gas phase producing higher MgF2 concentrations. Under high heating rate conditions, MgF2 formation is favored over MgO formation for both particle sizes owing to the high reaction temperatures that promote gas phase reactions favoring MgF2 formation. Theoretical analysis using density functional theory (DFT) through cluster models for Mg(OH)(2) and MgO surfaces further show that the Mg(OH)(2) surface is more reactive with fluorine species than MgO, especially at elevated temperatures. The DFT results help explain the high heating rate reaction pathway that favors fluorination reactions independent of Mg particle size. (C) 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:镁(Mg)颗粒表面可用于根据施加的加热速率和Mg粒径调节氟化或氧化反应。镁颗粒包围由由氧化镁(MgO)内层和氢氧化镁的外层(Mg(OH)(2))组成的复合氢氧化物壳包围。随着颗粒接近纳米级,厚氧化物壳(例如,22nm)变成总粉末的明显部分,并且可以被利用以调节反应性。在该研究中,将800nm Mg颗粒(NMG)的反应性与44μmmg颗粒(mu mg)与全氟聚乙烯(PFPE)组合进行比较,为Mg反应提供氟和氧气。实验以缓慢加热速率(10℃/ min)进行,并且在快速加热速率下进行单独的实验(6.0×10(5)℃/ min)。缓慢的加热速率研究用来使用差分扫描量热计(DSC)和热重度(TG)分析仪来检查反应动力学。更快的加热速率实验使用热线来点燃热滞回物反应。粉末X射线衍射(XRD)在对应于DSC中的放热事件的各种温度下回收残余物的分析显示了NMG + PFPE的反应途径,有利于氧化反应。对于NMG粉末,外部Mg(OH)(2)表面层在低温下脱水(313℃),在冷凝相中产生高反应性的表面氧化反应,导致Mg(OH)(2)的更高转化率MgO通过氧化反应更大的Mg消耗。对于Mu Mg,较高的Mg(OH)(2)脱水温度(498℃)稳定μmg颗粒,并且大量反应在升高的温度下发生,并且在产生较高的MgF2浓度的气相中发生。在高加热速率条件下,由于高反应温度,MgF 2形成对粒度的高反应温度,促进了促进了MGF2形成的气相反应的高反应温度。利用密度函数理论(DFT)通过Mg(OH)(2)和MgO表面的簇模型的理论分析进一步表明Mg(OH)(2)表面与氟物种比MgO更具反应,尤其是在升高的温度下。 DFT结果有助于解释高加热速率反应途径,这些反应途径与Mg粒径无关的氟化反应。 (c)2020燃烧研究所。由elsevier Inc.保留所有权利发布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号