首页> 外文期刊>Combustion and Flame >Experimental investigation on a rotating detonation cycle with burned gas backflow
【24h】

Experimental investigation on a rotating detonation cycle with burned gas backflow

机译:燃烧气体回流旋转爆轰循环的实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

To analyze a rotating detonation cycle (RDC) with burned gas backflow, simultaneous self-luminous visualization, pressure, and thrust measurements with gaseous ethylene and oxygen were performed. Three different geometric blockage ratios (bottom-wall-surface area to cross-sectional area of combustor) were set at 89.2, 70.2, and 51.7%. The fuel and oxidizer mass flow rates and equivalence ratio were constant at 20.6g/s, 41.2g/s, and 1.7, respectively. During the combustion test, the single detonation wave rotated at 1557, 1459, and 1353 m/s, and the propagation speed increased proportionally for the geometric blockage ratio. The estimated fuel-oxidizer-based specific impulse was in the range of 148 +/- 8s, and the impact of the geometric blockage ratio and propagation speeds on this specific impulse was not confirmed. The hydrodynamic blockage ratio of the oxidizer injector due to the detonation wave was estimated using the oxidizer plenum pressure. It was found that the hydrodynamic blockage ratio linearly decreased with an increase in the geometric blockage ratio. This important trend suggests that the RDC operation is limited in the region of the lower geometric blockage ratio. It is also predicted that a reduction in the hydrodynamic blockage ratio while maintaining the geometric blockage ratio is required for stable RDC operation and achievement of pressure gain combustion. Moreover, the whole RDC structure including the burned gas back flow successfully visualized at the frame rate of 0.5 and 1 mu s. The validity of estimated hydrodynamic blockage ratio was demonstrated by comparison with the visualization experiment. It was concluded that the hydrodynamic blockage ratio was primarily determined mainly by the time scale of the burned gas backflow. (C) 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:为了分析燃烧气体回流的旋转爆轰循环(RDC),进行同时自发光可视化,压力和具有气态乙烯和氧的推力测量。三种不同的几何堵塞比(燃烧器横截面积的底壁表面积)设定为89.2,70.2和51.7%。燃料和氧化剂质量流量和等效比分别为20.6g / s,41.2g / s和1.7。在燃烧测试期间,在1557,1459和1353m / s处旋转的单个爆轰波,并且传播速度比几何阻塞比成比例地增加。估计的燃料氧化剂的特异性脉冲在148 +/- 8s的范围内,并且没有确认几何封闭率和传播速度对该特定脉冲的影响。使用氧化剂压力压力估计引起的爆炸波引起的氧化剂注射器的流体动力障碍物。发现流体动力阻断比随着几何阻塞比的增加而线性降低。这一重要趋势表明,RDC操作在几何阻塞比的区域中受到限制。还预测,稳定的RDC操作和压力增益燃烧的实现需要在保持几何封闭率的同时降低流体动力堵塞比。此外,包括燃烧的气体回流的整个RDC结构成功地以0.5和1μs的帧速率可视化。通过与可视化实验相比,证明了估计的流体动力阻断比的有效性。得出结论是,流体动力阻断比主要由燃烧气体回流的时间等级来确定。 (c)2020燃烧研究所。由elsevier Inc.出版的所有权利保留。

著录项

  • 来源
    《Combustion and Flame》 |2021年第3期|13-19|共7页
  • 作者单位

    Nagoya Univ Dept Aerosp Engn Chikusa Ku Furo Cho Nagoya Aichi 4648603 Japan;

    Nagoya Univ Dept Aerosp Engn Chikusa Ku Furo Cho Nagoya Aichi 4648603 Japan;

    Nagoya Univ Dept Aerosp Engn Chikusa Ku Furo Cho Nagoya Aichi 4648603 Japan;

    Nagoya Univ Dept Aerosp Engn Chikusa Ku Furo Cho Nagoya Aichi 4648603 Japan;

    Nagoya Univ Dept Aerosp Engn Chikusa Ku Furo Cho Nagoya Aichi 4648603 Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Burned gas backflow; Injector; Pressure gain; Rotating detonation cycle; RDE;

    机译:燃烧的气体回流;注射器;压力增益;旋转爆炸循环;RDE;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号