首页> 外文期刊>Combustion and Flame >Influence of rotational asymmetry on thermoacoustic instabilities in a can-annular lean-premixed combustor
【24h】

Influence of rotational asymmetry on thermoacoustic instabilities in a can-annular lean-premixed combustor

机译:旋转不对称对罐环倾斜预混燃烧器热声型造型的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Low-frequency combustion instabilities, and ultimately, engine-level dynamics in can-annular gas turbine combustion systems, are driven by acoustic interactions between adjacent combustors through an annular cross-talk section upstream of first stage turbine nozzles. This is an area of substantial technological challenges, because experimental and numerical complexities scale exponentially with the number of combustors, restricting most investigations to a single combustor or a coupled two-combustor configuration. We recently reported that in a can-annular combustion system consisting of four identical lean-premixed combustors pressure oscillations occur in many combinations of characteristic patterns and frequencies, including symmetric (push-push) and asymmetric (push-pull) interactions, when the system is subjected to rotationally symmetric operating conditions. The impact of rotational asymmetry on can-annular thermoacoustics is still a largely open subject; here we use the same experimental setup to perform multiple independent analyses of the effect of broken rotational symmetry on large-scale pattern formations and modal dynamics of multiple eigenmodes. We demonstrate that the presence of rotational asymmetry can lead to fundamentally different dynamic states, including pairwise push-pull modes, spinning azimuthal instabilities, superposition modes, and strong mode localization, which are totally absent under rotationally symmetric conditions. Of particular importance is the experimental observation of spinning azimuthal instabilities in the annular cross-talk section, which are acoustically separate from flame-dynamics-driven standing wave motion in the flame tube sections. This leads to the coexistence of traveling and standing waves in the can-annular system. In conjunction with FEM-based Helmholtz simulations, we determine the origin of the azimuthal modes to be the simultaneous excitation of two different pairwise push-pull interaction modes at the same frequency - a phenomenon known as degenerate eigenmodes. (C) 2020 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
机译:低频燃烧不稳定性,最终,罐环形燃气轮机燃烧系统中的发动机级动力学通过相邻燃烧器之间的声学​​相互作用驱动,通过第一级涡轮喷嘴的环形串扰部分。这是一种大量技术挑战的领域,因为实验和数值复杂性与燃烧器的数量呈指数级,限制了大多数调查到单个燃烧器或耦合的双燃烧器配置。我们最近报道,在一个环形燃烧系统中,由四个相同的瘦燃烧器组成的燃烧系统,压力振荡发生在特征模式和频率的许多组合中,包括对称(推送)和不对称(推挽)相互作用,当系统时经受旋转对称的操作条件。旋转不对称对罐环热声学的影响仍然是一个很大程度上的开放主题;在这里,我们使用相同的实验设置来执行多重分析破碎旋转对称性对多个特征模型的大规模模式形成和模态动态的影响。我们证明旋转不对称性的存在可以导致基本上不同的动态状态,包括成对推拉模式,旋转方位形稳定性,叠加模式和强模式定位,这在旋转对称条件下完全不存在。特别重要的是在环形串扰部分中旋转方位而视界面的实验观察,其在声学上与火焰管部分中的火焰动态驱动的驻波运动分离。这导致在罐环系统中行进和站立波的共存。结合基于FEM的Helmholtz模拟,我们确定方位文模式的起源是在相同频率下同时激发两种不同的成对推拉交互模式 - 一种称为简并提高的现象。 (c)2020燃烧研究所。由elsevier Inc.出版的所有权利保留。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号